タグ「反時計回り」の検索結果

6ページ目:全65問中51問~60問を表示)
龍谷大学 私立 龍谷大学 2011年 第3問
円$C:x^2+y^2=1$上を動く点$\mathrm{P}$は,時刻$0$のときに点$\mathrm{A}(1,\ 0)$を出発して,時刻$t$のとき,弧$\koa{$\mathrm{AP}$}$の長さが$t$となるように反時計回りに動く.また,円$D:x^2+(y-1)^2=1$上を動く点$\mathrm{Q}$は,時刻$0$のときに点$\mathrm{O}(0,\ 0)$を出発して,時刻$t$のとき,弧$\koa{$\mathrm{OQ}$}$の長さが$t$となるように反時計回りに動く.時刻$t$が$0 \leqq t \leqq \pi$のとき,以下の問いに答えなさい.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$を用いて表しなさい.
(2)$\displaystyle t=\frac{\pi}{6}$のときの線分$\mathrm{PQ}$の長さを求めなさい.
(3)線分$\mathrm{PQ}$の長さの最小値を求めなさい.また,そのときの線分$\mathrm{PQ}$を図示しなさい.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
長方形OAB$_1$C$_1$において$\text{OA}=1,\ \angle \text{AOB}_1=\theta \ (0^\circ<\theta<90^\circ)$とする.図のように,この長方形の対角線OB$_1$を一辺とし,$\angle \text{B}_1 \text{OB}_2=\theta$となる長方形OB$_1$B$_2$C$_2$を反時計回りに作る.同様にして$\angle \text{B}_n \text{OB}_{n+1}=\theta$となる長方形OB$_n$B$_{n+1}$C$_{n+1} \ (n=1,\ 2,\ \cdots)$を作る.次の問いに答えよ.

(1)線分OB$_1$およびB$_1$B$_2$の長さを$\theta$で表せ.
(2)長方形OB$_n$B$_{n+1}$C$_{n+1}$の面積を$n$と$\theta$で表せ.ただしB$_0=\text{A}$とする.
(3)$\theta=30^\circ$のとき,図形OAB$_1$B$_2$B$_3$B$_4$C$_4$の面積$S$を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第3問
座標平面において原点を中心とする半径$1$の円を$C_1$とし,点$(1,\ 0)$を中心とする半径$3$の円を$C_2$とする.動点$\mathrm{P}$は$C_1$上を反時計回りに$1$秒間に$2$回転の速さで等速円運動をし,動点$\mathrm{Q}$は$C_2$上を反時計回りに$1$秒間に$1$回転の速さで等速円運動をしている.時刻$t=0$のとき,$\mathrm{P}$は$(0,\ 1)$にあり,$\mathrm{Q}$は$(4,\ 0)$にあるものとする.$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の$2$乗の最大値と最小値,およびそれらをとる$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
京都府立大学 公立 京都府立大学 2011年 第3問
$n$を$5$以上の整数とする.座標平面上に原点$\mathrm{O}$を中心とする半径$n$の円$C_1$と,点$\mathrm{A}$を中心とする半径$1$の円$C_2$がある.$C_2$が$C_1$に外接しながらすべることなく反時計回りに転がるとき,$C_2$上の点$\mathrm{P}$が描く曲線を考える.はじめに$\mathrm{A}$は$(n+1,\ 0)$,$\mathrm{P}$は$(n,\ 0)$の位置にあるものとする.$\mathrm{P}$が$(n,\ 0)$から出発し,再び$(n,\ 0)$に戻るまで,$\mathrm{P}$が描く曲線を$C$とする.線分$\mathrm{OA}$と$x$軸の正の部分のなす角が$\theta (0 \leqq \theta \leqq 2\pi)$であるときの$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.以下の問いに答えよ.

(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)区間$\displaystyle 0 \leqq \theta \leqq \frac{2\pi}{n}$で$x(\theta)$の増減を調べよ.
(3)$C$によって囲まれた部分の面積を求めよ.
東京大学 国立 東京大学 2010年 第5問
$C$を半径$1$の円周とし,$\mathrm{A}$を$C$上の$1$点とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{A}$を時刻$t=0$に出発し,$C$上を各々一定の速さで,$\mathrm{P}$,$\mathrm{Q}$は反時計回りに,$\mathrm{R}$は時計回りに,時刻$t=2\pi$まで動く.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の速さは,それぞれ$m$,$1$,$2$であるとする.(したがって,$\mathrm{Q}$は$C$をちょうど一周する.)ただし,$m$は$1\leqq m \leqq 10$をみたす整数である.$\triangle \mathrm{PQR}$が$\mathrm{PR}$を斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
東京大学 国立 東京大学 2010年 第4問
$C$を半径1の円周とし,Aを$C$上の1点とする.3点P,Q,RがAを時刻$t=0$に出発し,$C$上を各々一定の速さで,P,Qは反時計回りに,Rは時計回りに,時刻$t=2\pi$まで動く.P,Q,Rの速さは,それぞれ$m$,1,2であるとする.(したがって,Qは$C$をちょうど一周する.)ただし,$m$は$1\leqq m\leqq10$をみたす整数である.$\triangle$PQRがPRを斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第1問
$\displaystyle 0<\theta<\frac{\pi}{2}$とする.点Oを中心とする円周上に反時計回りに並んだ5点A,B,C,D,Eがあり,$\angle \text{AOB},\ \angle \text{BOC},\ \angle \text{COD},\ \angle \text{DOE}$はすべて$\theta$に等しい.$\alpha=2\pi-4\theta,\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ t=\cos \theta$とする.

(1)$\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OD}}$および$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OE}}$を$\overrightarrow{c}$と$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}}$が成り立つとき,$\alpha$は$\theta$に等しいことを示せ.
鳴門教育大学 国立 鳴門教育大学 2010年 第2問
$1$辺の長さが$1$の正六角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4 \mathrm{A}_5 \mathrm{A}_6$を考える.次の問いに答えよ.

(1)$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4 \mathrm{A}_5 \mathrm{A}_6$の面積を求めよ.
(2)各頂点$\mathrm{A}_i$から辺上に反時計回りに$x$だけ進んだ点を$\mathrm{B}_i$とする.ただし$0<x<1$とする.六角形$\mathrm{B}_1 \mathrm{B}_2 \mathrm{B}_3 \mathrm{B}_4 \mathrm{B}_5 \mathrm{B}_6$の面積を$x$を使って表し,それが最小となる$x$およびそのときの面積を求めよ.
高知大学 国立 高知大学 2010年 第3問
平面上に円$S$と6点A,B,C,D,E,Fがある.A,B,Cは$S$上の異なる3点で,この順番で反時計回りに並んでいる.線分ABをAの側に延長した半直線上に点Dがある.$\angle \text{CAD}$を二等分する直線$\ell$と円$S$は異なる2点で交わり,それらはAとEである.さらに,EはCを含まない$S$上の弧AB上にある.また,$\ell$は線分BCをCの側に延長した半直線と交わり,その交点がFである.このとき,次の問いに答えよ.

(1)題意にしたがって,円$S$,三角形ABCおよび点D,E,Fを描け.
(2)三角形ACFと三角形AEBが相似であることを証明せよ.
(3)$\text{AB} \cdot \text{EF}=\text{EB} \cdot \text{BF}$となることを証明せよ.
スポンサーリンク

「反時計回り」とは・・・

 まだこのタグの説明は執筆されていません。