タグ「原点」の検索結果

99ページ目:全992問中981問~990問を表示)
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
県立広島大学 公立 県立広島大学 2010年 第4問
放物線$\displaystyle y=\frac{1}{2}x^2$について,次の問いに答えよ.

(1)点P$\displaystyle \left(1,\ \frac{1}{2} \right)$における接線$\ell_1$の方程式を求めよ.
(2)点Pを通り直線$\ell_1$に直交する直線を$\ell_2$とする.直線$\ell_2$と$x$軸との交点Aの座標を求めよ.
(3)点Aを中心とし,直線$\ell_1$に接する円の方程式を求めよ.
(4)(3)の円と$x$軸との交点のうち原点に近い方の点Bの座標を求めよ.
(5)放物線,円弧BPおよび$x$軸で囲まれた図形の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
高知工科大学 公立 高知工科大学 2010年 第1問
Oを原点とする座標平面上に点A$(7,\ 0)$,B$(4,\ 4)$がある.次の各問に答えよ.

(1)$\triangle$OABの外接円の半径を求めよ.
(2)$\triangle$OABの外接円の中心の座標を求めよ.
(3)$\triangle$OABの内接円の半径を求めよ.
(4)$\triangle$OABの内接円の中心の座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第2問
原点をOとする座標空間において,2点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$から等距離にある点の集合を平面Hとする.次の問いに答えよ.

(1)直線ABが平面Hに垂直であることを示せ.
(2)原点Oから平面Hに下ろした垂線の足を点Cとする.点Cの座標を求めよ.
(3)$d$を正の実数とする.PをH上の点とするとき,不等式$\text{OP} \leqq d$を満たす点Pの領域の面積を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第2問
座標平面の原点$\mathrm{O}$を中心とする半径$r$の円を$C$とする.$C$上の$2$点$\mathrm{P}_1$,$\mathrm{P}_2$を原点に関して対称な位置にとる.また,点$\mathrm{Q}$を平面上の任意の点とし,$L={\mathrm{QP}_1}^2+{\mathrm{QP}_2}^2$とおく.

(1)$\mathrm{Q}$を固定したとき,$L$は$\mathrm{P}_1$,$\mathrm{P}_2$のとり方に依存せず一定であることを示せ.
(2)$\mathrm{Q}$が放物線$y=-x^2+5x-8$上を動くとき,$L$の最小値とそのときの$\mathrm{Q}$の座標を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第3問
座標平面上において,点$(x,\ y)$から点$(x+1,\ y)$または点$(x,\ y+1)$への移動をN型移動といい,点$(x,\ y)$から点$(x+1,\ y+1)$への移動をS型移動という.$n$を3以上の整数とする.原点Oから出発し,$2n-2$回のN型移動と1回のS型移動を組合せて点$(n,\ n)$に到達する径路の総数を$A(n)$とする.また,このような径路のうち,S型移動を$k$回目の移動として含む径路の総数を$B(n,\ k)$とする.このとき,次の問いに答えよ.

(1)$A(3)$を求めよ.
(2)$B(4,\ 1),\ B(4,\ 2)$をそれぞれ求めよ.
(3)$B(n,\ 1)$を$n$を用いて表せ.
(4)一般の$k=1,\ 2,\ 3,\ \cdots,\ 2n-1$に対して,$B(n,\ k)$を$n,\ k$を用いて表せ.
(5)$A(n)$を$n$を用いて表せ.

ただし,$p,\ q,\ r$を非負の整数とし,$p \leqq q \leqq r$とするとき,
\[ \sum_{i=0}^p \comb{p}{i} \cdot \comb{r}{q-i}=\comb{p+r}{q} \]
が成り立つことを用いてもよい.
兵庫県立大学 公立 兵庫県立大学 2010年 第3問
数直線上の原点に点Aがある.点Aは次の規則に従って数直線上を正の向きに動いていく.\\
『Aが座標$k$の位置にあるとき数直線上の正の向きに1進む確率が$\displaystyle \frac{1}{k+1}$,正の向きに2進む確率が$\displaystyle \frac{k}{k+1}$である.』\\
点Aが座標$n$の位置に立ち寄る確率を$p_n$とする.このとき,次の問いに答えよ.

(1)$p_3$を求めよ.
(2)$p_{n+1}$を$p_n$で表せ.
(3)$p_n$を求めよ.
会津大学 公立 会津大学 2010年 第4問
座標平面上を動く点$\mathrm{P}$が,はじめ原点$\mathrm{O}$にある.コインを投げて表が出たときには$\mathrm{P}$は$x$軸の正の向きに$1$進み,裏が出たときには$\mathrm{P}$は$y$軸の正の向きに$1$進むとする.以下の問いに答えよ.

(1)コインを2回投げた結果,$\mathrm{P}$が$(1,\ 1)$にある確率を求めよ.
(2)コインを4回投げた結果,$\mathrm{P}$が$(2,\ 2)$にある確率を求めよ.
(3)コインを3回投げた後の2点$\mathrm{O},\ \mathrm{P}$間の距離$\mathrm{OP}$の期待値を求めよ.
(4)コインを7回投げた結果,距離$\mathrm{OP}=5$となる確率を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。