タグ「原点」の検索結果

94ページ目:全992問中931問~940問を表示)
鹿児島大学 国立 鹿児島大学 2010年 第6問
$x^2-y^2=2$で表される曲線を$C$とし,P$(x_0,\ y_0)$を$C$上の点とする.次の各問いに答えよ.

(1)曲線$C$の点Pにおける接線$\ell$の方程式は
\[ x_0x-y_0y=2 \]
となることを証明せよ.
(2)原点Oから$\ell$に下ろした垂線をOHとする.Hの座標を$(x_1,\ y_1)$とするとき,$x_1,\ y_1$を$x_0$と$y_0$で表せ.
(3)F$(1,\ 0)$,F$^\prime(-1,\ 0)$とする.$\text{FH} \cdot \text{F}^\prime \text{H}$は点Pの取り方によらず一定であることを証明せよ.また,その値を求めよ.
小樽商科大学 国立 小樽商科大学 2010年 第5問
座標平面上の点$\mathrm{A}(a,\ b)$を,原点を中心として$30^\circ$回転移動した点$\mathrm{B}$の$x$座標が$\sqrt{3}-2$で更に,点$\mathrm{B}$を,原点を中心として$-60^\circ$回転移動した点$\mathrm{C}$の$y$座標が$-1+2 \sqrt{3}$であるとき,点$\mathrm{A}(a,\ b)$を求めよ.
新潟大学 国立 新潟大学 2010年 第4問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)O,P,Qが同一直線上にあるとき$X=1$,また,O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき$X=2$,そのどちらでもないとき$X=0$とする.このとき,$X$の期待値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点$\mathrm{C} \displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点$\mathrm{N}(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,$\mathrm{O}$は原点を表すものとする.

(1)$x$軸上に点$\mathrm{P}(x,\ 0)$をとり,直線$\mathrm{NP}$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に$2$点$\mathrm{P}_1(x_1,\ 0)$,$\mathrm{P}_2(x_2,\ 0)$をとる.直線$\mathrm{NP}_1$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_1$とし,直線$\mathrm{NP}_2$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_2$とする.このとき,$x_1 x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
九州工業大学 国立 九州工業大学 2010年 第3問
点$\mathrm{O}$を原点,点$\mathrm{P}$を楕円$\displaystyle \frac{x^2}{16}+\frac{(y-3)^2}{25}=1$上の点とする.$x$軸の正の部分を始線として動径$\mathrm{OP}$の表す角を$\theta \ (0 \leqq \theta<2\pi)$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の$y$座標を$\displaystyle \frac{a+b \sin \theta}{c+d \sin \theta}$($a,\ b,\ c,\ d$は実数)の形で表せ.
(2)点$\mathrm{P}$における楕円の接線を$\ell$とする.直線$\ell$の方程式を求めよ.
(3)点$\mathrm{A}$の座標を$(0,\ 6)$とする.点$\mathrm{A}$を(2)の直線$\ell$に関して対称移動した点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2010年 第5問
2次の正方行列$A,\ B$について,次の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
\displaystyle\frac{4}{5} & b \\
c & d
\end{array} \right)$は原点のまわりの回転移動を表し,$b>0$である.行列$A$を求めよ.
(2)行列$B$の表す移動(1次変換)に続いて行列$A$の表す移動を行うことで得られる合成移動(合成変換)は$y$軸に関する対称移動になる.行列$B$を求めよ.
(3)$B \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$を満たす点$(x,\ y)$の集まりは直線となることを示せ.また,その直線を表す式を求めよ.
(4)$B \left( \begin{array}{c}
z \\
w
\end{array} \right)=\left( \begin{array}{c}
2 \\
1
\end{array} \right)$を満たす列ベクトル$\left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.また,この列ベクトルと自然数$n$に対し,$B^n \left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径1の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第2問
実数$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$に対して行列$A$を
\[ A=\left( \begin{array}{rr}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta
\end{array} \right) \]
とする.また,実数$k \ (k>0)$に対して,$x,\ y$は
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
0 \\
k
\end{array} \right) \]
を満たす.そして,$x,\ y,\ k$を用いて座標平面上の2点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(0,\ k)$を定める.原点を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$k,\ \tan \theta$を用いて表せ.
(2)$\angle \mathrm{OPQ}$を$\theta$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$を$x$軸の周りに1回転させてできる立体の体積$V(\theta)$を求めよ.
(4)(3)で求めた$V(\theta)$について,$\displaystyle \lim_{\theta \to +0}\frac{\theta}{2\pi}V(\theta)$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2010年 第2問
図に示す点$\mathrm{O}$を原点とする直交座標空間に点$\mathrm{P}(1,\ 0,\ 0)$をとる.点$\mathrm{P}$を,$xy$平面内で原点$\mathrm{O}$を中心として図に示す矢印の方向に角度$\theta$回転させた位置に点$\mathrm{Q}$をとる.さらに,点$\mathrm{Q}$および$z$軸を含む平面内で,点$\mathrm{O}$を中心として点$\mathrm{Q}$を矢印の方向に角度$\theta$回転させた位置に点$\mathrm{R}$をとる.ただし,角度$\theta$の範囲は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.以下の問いに答えよ.
(図は省略)

(1)点$\mathrm{R}$の座標$(x_\mathrm{R},\ y_\mathrm{R},\ z_\mathrm{R})$を,角度$\theta$を用いて表せ.
(2)$\displaystyle \angle \mathrm{ORP}=\frac{\pi}{3}$であるとき,角度$\theta$の値を求めよ.
(3)点$\mathrm{R}$から平面$x+y=0$に下ろした垂線の長さ$l$を,角度$\theta$の関数で表せ.
(4)(3)で求めた垂線の長さ$l$が最大となるときの角度$\theta$の値とそのときの$l$の値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。