タグ「原点」の検索結果

93ページ目:全992問中921問~930問を表示)
茨城大学 国立 茨城大学 2010年 第3問
点$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$がある.このとき,以下の各問に答えよ.

(1)実数$s,\ t$によって,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$で定められる点$\mathrm{P}$を考える.$s,\ t$が$s+2t \leqq 2$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(2)実数$u$によって,$\overrightarrow{\mathrm{OQ}}=(1-u)\overrightarrow{\mathrm{QA}}+2u\overrightarrow{\mathrm{QB}}$で定められる点$\mathrm{Q}$を考える.$u$が$0 \leqq u \leqq 1$を満たしながら動くとき,点$\mathrm{Q}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(3)(1)で得られた図形が,(2)で得られた図形によって$2$つの図形に分割される.この$2$つの図形の面積をそれぞれ$S,\ T (S \leqq T)$とおくとき,$\displaystyle \frac{S}{T}$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第3問
座標平面上に,点$\mathrm{P}(p,\ q)$を中心とする楕円がある.長軸,短軸がそれぞれ$x$軸,$y$軸に平行であり,それぞれの長さは$4,\ 2$である.このとき,以下の問に答えよ.

(1)この楕円の方程式を求めよ.
(2)原点から,この楕円に異なる$2$本の接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
(3)さらに,原点から,この楕円に$2$本の直交する接線が引けるような,点$\mathrm{P}(p,\ q)$の存在範囲を求めて,図示せよ.
防衛医科大学校 国立 防衛医科大学校 2010年 第4問
座標平面上の原点O$(0,\ 0)$,点A$(1,\ 0)$,点B$(1,\ 1)$,点C$(0,\ 1)$および点P$(a,\ b)$に対して,点Pを原点のまわりに$90^\circ$回転した点をQ,点Qを点Aのまわりに$90^\circ$回転した点をR,点Rを点Bのまわりに$90^\circ$回転した点をS,また点Pを点Cのまわりに$-90^\circ$回転した点をUとする.このとき,以下の問に答えよ.

(1)点Rの座標を求めよ.
(2)点Uの座標を求めよ.
(3)ベクトル$\overrightarrow{\mathrm{US}}$は$a,\ b$に無関係であることを示せ.
(4)3点B,R,Uが一直線上にあるための必要十分条件を求めよ.ただし,2点あるいは3点が重なっている場合も,3点は一直線上にあるものとする.
福島大学 国立 福島大学 2010年 第3問
曲線$C:y=x^3+2ax^2+bx$と直線$\ell:y=ax$が$x \geqq 0$で定義されており,原点以外でこれらの曲線$C$と直線$\ell$が接するものとする.次の問いに答えなさい.なお,$a \neq 0$とする.

(1)曲線$C$と直線$\ell$との共有点が二つあることを示し,それらの共有点の座標を求めなさい.また,$a$のとりうる値の範囲を求めなさい.
(2)曲線$C$と直線$\ell$で囲まれる面積を$S_1$,これら二つの共有点と点$(0,\ -1)$からなる三角形の面積を$S_2$とする.$S_1=S_2$となる$a$の値を求めなさい.
大阪教育大学 国立 大阪教育大学 2010年 第4問
点Pは数直線上の原点から出発して,「確率$p$で$+1$,確率$1-p$で$+2$」の移動を繰り返す.ただし$0 \leqq p \leqq 1$とする.このような移動を繰り返して自然数$n$の点に到達する確率を$p_n$と表す.次の問に答えよ.

(1)$p_1,\ p_2,\ p_3$を$p$を用いて表せ.
(2)$p_n,\ p_{n+1},\ p_{n+2}$の間の関係式を求めよ.
(3)$a_n=p_{n+1}-p_n \ (n \geqq 1)$とおくとき,数列$\{a_n\}$が満たす漸化式を求めよ.
(4)$p$と$n$を用いて,一般項$p_n$を表せ.
(5)数列$\{p_n\}$の極限を調べよ.
新潟大学 国立 新潟大学 2010年 第5問
座標平面上の4点をA$(1,\ 1)$,B$(1,\ 2)$,C$(2,\ 2)$,D$(2,\ 1)$とする.点Aに駒をおき,1個のさいころを投げて,出た目の数だけこれらの点の上を時計回りに駒を進める試行を考える.たとえば,出た目が5のとき,駒はA→B→C→D→A→Bと進みBに止まる.1回目の試行で止まる点をPとし,駒を点Aに戻し,2回目の試行で止まる点をQとする.このとき,次の問いに答えよ.ただし,Oは原点を表す.

(1)O,P,Qが同一直線上にある確率を求めよ.
(2)O,P,Qを通る2次関数$y=f(x)$のグラフがただ一通りに定まるとき,P,Qの位置およびその2次関数をすべて求めよ.
(3)(2)で2次関数がただ一通りに定まるとき,その2次関数の最大値を$X$とし,そうでないとき$X=0$とする.このとき,$X$の期待値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径$1$の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第2問
次の各問いに答えよ.

(1)直線$\ell:y=ax+b$が原点を中心とする半径1の円と点$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$で接しているとする.また,直線$\ell$は放物線$C:y=x^2-\sqrt{3}x+c$とも接しているとする.このとき,次の各問いに答えよ.

\mon[(a)] 定数$a,\ b$の値を求めよ.
\mon[(b)] 放物線$C$と直線$\ell$との接点の座標および定数$c$の値を求めよ.
\mon[(c)] 放物線$C$と直線$\ell$および$y$軸とで囲まれた図形の面積を求めよ.

(2)$0 \leqq \theta \leqq \pi$の範囲で,
\[ 5 \sin^2 \theta+14 \cos \theta-13 \geqq 0 \]
を満たす$\theta$の中で最大のものを$\alpha$とするとき,$\cos \alpha$と$\tan 2\alpha$の値を求めよ.
東京農工大学 国立 東京農工大学 2010年 第1問
Oを原点とする座標空間にある,中心C$(1,\ 1,\ \sqrt{10})$,半径$3\sqrt{3}$の球面を$S$とする.次の問いに答えよ.

(1)$S$と$x$軸の正の部分との交点をPとし,$S$と$y$軸の正の部分との交点をQとする.P,Qの座標を求めよ.
(2)2点O,Cを通る直線と$S$との交点のうち,$z$座標が正であるものをRとする.Rの座標を求めよ.
(3)四面体OPQRの体積$V$を求めよ.
(4)4点O,P,Q,Rを通る球面の半径$r_1$を求めよ.
(5)四面体OPQRに内接する球面の半径を$r_2$とする.このとき,$\displaystyle \frac{r_1}{r_2}$の値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。