タグ「原点」の検索結果

92ページ目:全992問中911問~920問を表示)
高知大学 国立 高知大学 2010年 第4問
$xy$平面上の原点を中心として半径1の円$C$を考える.$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とし,$C$上の点$(\cos \theta,\ \sin \theta)$をPとする.Pで$C$に接し,さらに$y$軸と接する円でその中心が円$C$の内部にあるものを$S$とし,その中心Qの座標を$(u,\ v)$とする.このとき,次の問いに答えよ.

(1)$u$と$v$をそれぞれ$\cos \theta$と$\sin \theta$を用いて表せ.
(2)$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$としたとき,点Qの軌跡の式を求めよ.さらに,その軌跡を図示せよ.
(3)円$S$の面積を$D(\theta)$とするとき,次の値を求めよ.
\[ \lim_{\theta \to \frac{\pi}{2}} \frac{D(\theta)}{\left( \displaystyle \frac{\pi}{2}-\theta \right)^2} \]
福井大学 国立 福井大学 2010年 第3問
原点をOとする座標平面上,長方形ABCDが図のように頂点Aは$y$軸の正の部分に,頂点Bは$x$軸の正の部分に,頂点C,Dは第1象限内におかれている.$\text{AB}=2,\ \text{BC}=1$とし$\angle \text{OAB}=t$とおく.ただし,$\displaystyle 0<t<\frac{\pi}{2}$とする.このとき,以下の問いに答えよ.

(1)長方形ABCDの周で$y \leqq 1$にある部分の長さを$f(t)$とおく.$f(t)$を求めよ.
(2)$f(t)=3$が成り立つときの$\cos t,\ \sin t$の値を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲を動くとき,$f(t)$の最小値とそのときの$t$の値を求めよ.

\setlength\unitlength{1truecm}

(図は省略)
山形大学 国立 山形大学 2010年 第2問
原点を中心とする半径1の円を$C_1$とする.$\displaystyle 0<\theta<\frac{\pi}{4}$を満たす定数$\theta$に対して,$C_1$上に点P$(\sin \theta,\ \cos \theta)$,点Q$(-\cos \theta,\ -\sin \theta)$,点R$(-\sin \theta,\ -\cos \theta)$をとる.さらに,Pを中心とし,Qを通る円を$C_2$,Rを中心とし,Qを通る円を$C_3$とする.このとき,次の問に答えよ.

(1)$C_2$と$C_3$の2つの交点のうち,Qと異なる点をSとする.このとき,$C_1$はSを通ることを証明せよ.
(2)Sの座標を$\theta$を用いて表せ.
(3)$C_2$と$C_3$で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2010年 第2問
原点のまわりの角$\alpha$の回転移動$f$を表す行列を$F$とおき,$0^\circ \leqq \beta <90^\circ$として,直線$y=(\tan \beta)x$に関する対称移動$g$を表す行列を$G$とおく.また,合成移動$g \circ f$を表す行列を$H$とおく.

(1)$H$を求めよ.
(2)$\alpha=\alpha_1$のときの$H$を$H_1$,$\alpha=\alpha_2$のときの$H$を$H_2$とするとき,行列の積$H_2H_1$を求めよ.
(3)$n$を自然数とする.$\alpha=30^\circ,\ \beta=45^\circ$のときの$(FG)^n$を求めよ.
九州工業大学 国立 九州工業大学 2010年 第2問
Oを原点とする座標空間の2点A$(0,\ 0,\ 2)$,P$(\cos \theta,\ 2+\sin \theta,\ 1)$に対して,直線AP上の点で原点Oから最も近い点をQ$(X,\ Y,\ Z)$とする.$0 \leqq \theta \leqq 2\pi$として,次に答えよ.

(1)$X,\ Y,\ Z$を$\theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0,\ \pi,\ \frac{3}{2}\pi$のときの点Qの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とする.$0 \leqq \theta \leqq 2\pi$のとき,$\overrightarrow{\mathrm{OQ}}=s\overrightarrow{a}+t\overrightarrow{b}+u\overrightarrow{c}$をみたす実数$s,\ t,\ u$を$\theta$を用いて表せ.また,$s+t+u$の値を求めよ.
(3)点Qから$xy$平面にひいた垂線と$xy$平面の交点をR$(X,\ Y,\ 0)$とする.$\theta$が$0 \leqq \theta \leqq 2\pi$の範囲を動くとき,$xy$平面における点Rの軌跡を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
群馬大学 国立 群馬大学 2010年 第5問
座標平面における4分の1円:$x^2+y^2 \leqq 1 \ (x \geqq 0,\ y \geqq 0)$を,原点を通り$x$軸の正の向きと$\theta$の角をなす直線のまわりに1回転させてできる立体の体積を$V(\theta)$とおく.

(1)$\displaystyle V(0),\ V \left( \frac{\pi}{4} \right)$の値を求めよ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$のとき$V(\theta)$を求めよ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$V(\theta)$が最小となる$\theta$を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第3問
座標空間の原点を$\mathrm{O}$とし,$2$点$\mathrm{A}(2,\ -1,\ 4)$,$\mathrm{B}(k,\ -k,\ 2)$について,線分$\mathrm{AB}$を$1:4$に内分する点を$\mathrm{P}$とする.このとき,次の問いに答えよ.ただし,$k$は定数で$k>0$とする.

(1)点$\mathrm{P}$の座標を$k$を用いて表せ.
(2)直線$\mathrm{AB}$と直線$\mathrm{OP}$が直交するとき,$k$の値を求めよ.
(3)(2)で求めた$k$について,$\triangle \mathrm{OAB}$の面積を求めよ.
秋田大学 国立 秋田大学 2010年 第1問
$n$を自然数とするとき,次の問いに答えよ.

(1)不定積分$\displaystyle \int \pi (x+\pi) \sin \pi x \, dx$を求めよ.
(2)下の図のように,曲線$y = \pi(x+ \pi) \sin \pi x \ (0 \leqq x \leqq 2n-1)$と$x$軸とで囲まれた図形の$x$軸より上側にある部分を,原点側から順にP$_1$,P$_2$,P$_3$,$\cdots$,P$_n$と分けるとき,図形P$_k$の面積$S_k \ (k = 1,\ 2,\ 3,\ \cdots,\ n)$を$k$の式で表せ.
(図は省略)
(3)(2)の$S_k$に対して,$\displaystyle \sum_{k=1}^n S_k$を$n$の式で表せ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。