タグ「原点」の検索結果

82ページ目:全992問中811問~820問を表示)
関西大学 私立 関西大学 2011年 第1問
$a$を正の定数とする.座標平面上に曲線$C_1:y=ax^2$と曲線$C_2:x=y^2$がある.次の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点のうち,原点と異なる点の座標を求めよ.
(2)曲線$C_1$と$C_2$で囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V_1$とする.また,$D$を$y$軸のまわりに$1$回転してできる回転体の体積を$V_2$とする.$V_1$と$V_2$をそれぞれ$a$を用いて表せ.
(3)$(2)$で求めた$V_1$と$V_2$について,$V_1 \geqq V_2$となるような$a$の値の範囲を求めよ.また,$V_1-V_2$を最大にする$a$の値を求めよ.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
神奈川大学 私立 神奈川大学 2011年 第2問
$3$次関数$f(x)=x^3-20x+16$について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=f(x)$上の点$(a,\ f(a))$における接線の方程式を求めよ.
(3)$(2)$で求めた接線のうち,原点を通るものを求めよ.
(4)$y=f(x)$の接線で,$(3)$で求めた接線と傾きの等しいものが,もう$1$つある.その接線の方程式を求めよ.
神奈川大学 私立 神奈川大学 2011年 第3問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$C$に,この円の外にある点$\mathrm{P}$から$2$本の接線をひき,それらのなす角のうち$C$を挟むものの大きさを$\theta$とする.さらに,線分$\mathrm{OP}$の長さを$r$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\theta}{2}$を$r$を用いて表せ.

(2)$\cos \theta$を$r$を用いて表せ.

(3)$\displaystyle \theta=\frac{\pi}{3}$を満たす点$\mathrm{P}$の軌跡を求めよ.

(4)$\displaystyle \frac{\pi}{3} \leqq \theta \leqq \frac{2\pi}{3}$を満たす点$\mathrm{P}$の存在する領域の面積を求めよ.
(図は省略)
中部大学 私立 中部大学 2011年 第1問
次の$[ ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle -2<\log_8 x<\frac{5}{3}$を満たす$x$は$\displaystyle \frac{[ ]}{[ ]}<x<[ ]$である.
(2)$x^3+ax^2+x+b=0$が$1$と$-2$を解にもつとき,もう$1$つの解は$[ ]$である.
(3)$7$個の数字$1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4$を$1$列に並べる.このとき,偶数番目がすべて奇数になるような並べ方は$[ ]$通りある.
(4)$2$点$(2,\ 0,\ 1)$,$(1,\ 1,\ 2)$を通る直線がある.原点$\mathrm{O}$からこの直線に下ろした垂線の足を$\mathrm{A}$とする.点$\mathrm{A}$の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,原点から点$\mathrm{A}$までの距離は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
関西学院大学 私立 関西学院大学 2011年 第4問
関数$f(x)=x^{-2} \log x (x>0)$について次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)曲線$y=f(x)$上の点$(p,\ f(p))$における接線の方程式を求めよ.また,原点を通る接線$\ell$の方程式を求めよ.
(4)$m \neq -1$に対して,不定積分$\displaystyle \int x^m \log x \, dx$を求めよ.また,曲線$y=f(x)$,直線$\ell$,および$x$軸で囲まれる部分の面積$S$を求めよ.
産業医科大学 私立 産業医科大学 2011年 第2問
原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$に対し,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\pi$とおく.ただし,$a>0$,$b>0$,$c>0$とする.次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{P}$が平面$\pi$上にあって,$\overrightarrow{\mathrm{OP}}$が平面$\pi$と垂直になるように,実数$s,\ t,\ u$の値をそれぞれ$a,\ b,\ c$を用いて表しなさい.
(2)線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{Q}$は$\overrightarrow{\mathrm{CQ}}=r \overrightarrow{\mathrm{CM}}$を満たす点であるとする.ベクトル$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を最小にする実数$r$の値と,そのときの$|\overrightarrow{\mathrm{OQ}}|$の値を,それぞれ$a,\ b,\ c$を用いて表しなさい.
(3)$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCA}$の面積を,それぞれ$S_1,\ S_2,\ S_3$とするとき,$\triangle \mathrm{ABC}$の面積$S$を$S_1,\ S_2,\ S_3$を用いて表しなさい.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。