タグ「原点」の検索結果

81ページ目:全992問中801問~810問を表示)
明治大学 私立 明治大学 2011年 第3問
次の空欄$[ア]$から$[オ]$に当てはまるものをそれぞれ入れよ.

関数$f(t)$は$\displaystyle 0<t<\frac{\pi}{2}$において微分可能で$f(t)>0$かつ$f^\prime(t)>0$をみたすとする.また$\displaystyle f \left( \frac{\pi}{3} \right)=2$とする.
媒介変数表示$\displaystyle \left\{ \begin{array}{l}
x=f(t) \cos t \\
y=f(t) \sin t
\end{array} \right. \left( 0<t<\frac{\pi}{2} \right)$により定まる曲線を$C$とする.$C$上の点$\mathrm{P}(f(t) \cos t,\ f(t) \sin t)$における接線と$x$軸との交点を$\mathrm{A}(a(t),\ 0)$とすれば
\[ a(t)=\frac{(f(t))^2}{f^\prime(t) [ア]+f(t) [イ]} \]
となる.$\mathrm{O}$を原点とするとき,すべての$t$に対し$\mathrm{OP}=\mathrm{OA}$であれば$f$は
\[ f^\prime(t) [ア]+f(t) [ウ]=0 \]
をみたす.この式の両辺に$\cos t+1$をかけて整理すると
\[ \frac{d}{dt} \left( f(t) [エ] \right)=0 \]
となり,
\[ f(t)=[オ] [エ]^{-1} \]
が得られる.
明治大学 私立 明治大学 2011年 第2問
次の各問の$[ ]$にあてはまる数を記入せよ.

座標空間内に点$\mathrm{P}(s+3,\ 2s-1,\ 2s+1)$と点$\mathrm{Q}(2s+3,\ 1-2s,\ s-1)$がある.ただし,$s$は実数全体を動く.次の問に答えよ.
(1)線分$\mathrm{PQ}$の長さは
\[ \sqrt{[ア] \left( [イ]s^2-[ウ]s+[エ] \right)} \]
であり,$\displaystyle s=\frac{[オ]}{[カ]}$のときに最小値$\sqrt{[キ]}$をとる.

(2)$\mathrm{O}$を原点とし,$\theta=\angle \mathrm{POQ}$とする.$\cos \theta$のとる値の範囲を求めよう.$k=\cos \theta$とおくと
\[ k=\frac{[クケ]s+[コ]}{[サ]s^2+[シ]s+[スセ]} \cdots\cdots (*) \]
である.

(i) $\displaystyle s=-\frac{[コ]}{[クケ]}$のとき$k=0$となる.
(ii) $k \neq 0$のときに$(*)$を満たす実数$s$が存在するための条件は
\[ -\frac{[ソ]}{[タ]} \leqq k \leqq \frac{[チ]}{[ツ]} \]
である.

$(ⅰ),\ (ⅱ)$より$\cos \theta$のとる値の範囲は
\[ -\frac{[ソ]}{[タ]} \leqq \cos \theta \leqq \frac{[チ]}{[ツ]} \]
である.また,$\displaystyle \cos \theta=\frac{[チ]}{[ツ]}$となるのは$\displaystyle s=\frac{[テ]}{[ト]}$のときである.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)放物線$y=x^2+2x$を$x$軸方向に$p$,$y$軸方向に$\displaystyle \frac{1}{2}p^2$だけ平行移動して得られる放物線$C$の方程式を求めると$y=[ア]$である.$C$と直線$y=x$が異なる$2$つの点で交わるような$p$の値の範囲を求めると$[イ]$である.
(2)$3$次の整式$F(x)$を考える.$F(x)$の$x^3$の項の係数は$1$であり,$xF(x)$を$x^2-3x+2$で割った余りは$2x$である.このとき,$F(2)$の値は$F(2)=[ウ]$であり,さらに,$F(-1)=2$であるとき,$F(-2)$の値は$F(-2)=[エ]$である.
(3)$\triangle \mathrm{ABC}$において$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さがそれぞれ$2,\ 3,\ x$であるとする.このとき,$\triangle \mathrm{ABC}$の面積が最大になるような$x$の値を求めると$x=[オ]$である.また,$\angle \mathrm{ACB}$が最大になるような$x$の値を求めると$x=[カ]$である.
(4)$0<\alpha<\beta<\pi$のとき,座標平面上で,$2$点$\mathrm{A}(2 \cos \alpha,\ 2 \sin \alpha)$,$\mathrm{B}(2 \cos \alpha+\cos \beta,\ 2 \sin \alpha+\sin \beta)$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$を考える.$\mathrm{B}$の座標が$(1,\ 1)$のとき,$\cos \angle \mathrm{AOB}$の値は$\cos \angle \mathrm{AOB}=[キ]$であり,$\cos \alpha$の値は$\cos \alpha=[ク]$である.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
座標平面上において,原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1+\sqrt{3})$,点$\mathrm{B}(\sqrt{3},\ 2+\sqrt{3})$,点$\mathrm{C}(1+\sqrt{3},\ 0)$がある.このとき,以下の問いに答えよ.

(1)直線$\mathrm{AB}$を表す方程式と$\angle \mathrm{OAB}$の値を求めよ.
(2)$\angle \mathrm{OAB}$の二等分線の方程式を求めよ.
(3)中心が第$1$象限にあり,直線$\mathrm{AB}$,$x$軸,$y$軸に接する円$P$の方程式を求めよ.
(4)傾きが正で,かつ点$\mathrm{C}$を通り,$(3)$で求めた円$P$と接する直線$\ell$の方程式を求めよ.
龍谷大学 私立 龍谷大学 2011年 第2問
図のように,原点$\mathrm{O}$を中心とする半径$1$の円$C$上に$2$点$\mathrm{A}$,$\mathrm{B}$がある.点$\mathrm{A}$は第$3$象限にあり,点$\mathrm{A}$と点$\mathrm{B}$は$y$軸に関して対称である.また,$\angle \mathrm{AOB}=60^\circ$である.
(図は省略)

(1)点$\mathrm{A}$と点$\mathrm{B}$の座標を求めなさい.
(2)点$\mathrm{A}$における円$C$の接線$\ell$の方程式を求めなさい.
(3)点$\mathrm{A}$と点$\mathrm{B}$を通る放物線のうち,点$\mathrm{A}$における接線が$\ell$と一致するようなものの方程式を求めなさい.
立教大学 私立 立教大学 2011年 第1問
次の空欄アに$①$~$④$のいずれかを記入せよ.また空欄イ~スに当てはまる数または式を記入せよ.

(1)実数$x,\ y$に対して,$x^2+y^2 \leqq 1$は「$-1 \leqq x \leqq 1$かつ$-1 \leqq y \leqq 1$」であるための何条件かを,$①$「必要条件」,$②$「十分条件」,$③$「必要十分条件」,$④$「必要条件でも十分条件でもない」のうちから選択すると,$[ア]$となる.
(2)$3x^2-xy-2y^2-x+6y+k$が,$x,\ y$の整数係数の$1$次式の積に因数分解されるとき,$k=[イ]$である.
(3)$3$つの数$\log_2 x$,$\log_2 10$,$\log_2 20$がこの順で等差数列であるとき,$x=[ウ]$である.
(4)$\displaystyle \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots +\frac{1}{100 \cdot 101}=\frac{[エ]}{[オ]}$である.
(5)座標平面上の曲線$y=x^3+ax^2+bx$上の点$(2,\ 4)$における接線が$x$軸に平行であるとき,$a=[カ]$,$b=[キ]$である.
(6)自宅から$2000 \; \mathrm{m}$離れている駅まで,はじめに毎分$80 \; \mathrm{m}$で歩き,途中から毎分$170 \; \mathrm{m}$で走るものとする.出発してから$16$分以内に駅に到着するには,歩きはじめてから$[ク]$分以内に走り出さなければならない.
(7)点$\mathrm{A}(2,\ 3)$,点$\mathrm{B}(p,\ q)$と原点$\mathrm{O}$がつくる三角形$\mathrm{OAB}$について,$\angle \mathrm{OAB}=90^\circ$のとき,$p,\ q$の満たす条件は$p \neq 2$かつ$p=[ケ]$である.
(8)実数$x,\ y,\ a,\ b$が条件$x^2+y^2=2$,および$a^2+b^2=3$を満たすとき,$ax+by$の最大値は$[コ]$で,最小値は$[サ]$である.
(9)$\displaystyle x=\frac{\sqrt{6}-\sqrt{10}i}{3}$とし,$x$と共役な複素数を$y$とするとき,$x^3+y^3=[シ]$となる.ただし,$i$は虚数単位とする.
\mon $\displaystyle \sin x+\sin y=\frac{1}{3}$,$\displaystyle \cos x-\cos y=\frac{1}{2}$のとき,$\cos (x+y)$の値は$[ス]$である.
上智大学 私立 上智大学 2011年 第2問
$\mathrm{O}$を原点とする座標平面上に,放物線$F:y=x^2+1$および,点$\mathrm{A}(5,\ 0)$を中心とする半径$4$の円$C$がある.$F$上に点$\mathrm{P}(t,\ t^2+1)$,$C$上に点$\mathrm{Q}(a,\ b)$をとる.

(1)$\mathrm{P}$における放物線$F$の接線と直線$\mathrm{AP}$とが直交するとき,線分$\mathrm{AP}$の長さは$[タ] \sqrt{[チ]}$である.
(2)$\mathrm{Q}$を固定し,$\mathrm{P}$のみが動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle t=\frac{[ツ]}{[テ]} \frac{b}{a}$で最小値をとる.その最小値を$a$で表すと
\[ \frac{1}{8} \left( [ト]a+\frac{[ナ]}{a}+[ニ] \right) \]
である.
(3)$\mathrm{P}$,$\mathrm{Q}$がともに動くとする.$\triangle \mathrm{OPQ}$の面積は$\displaystyle a=\frac{[ヌ]}{[ネ]} \sqrt{[ノ]}$で最小値
\[ \frac{[ハ]}{[ヒ]}+\frac{[フ]}{[ヘ]} \sqrt{[ホ]} \]
をとる.
日本女子大学 私立 日本女子大学 2011年 第2問
数直線上を動く点$\mathrm{P}$がある.原点を出発して,さいころを$1$回振るごとに,$5$以上の目が出たら$+3$だけ,$4$以下の目が出たら$-1$だけ点$\mathrm{P}$の位置が数直線上で移動する.

(1)さいころを$4$回振るとき,点$\mathrm{P}$がちょうど$4$の位置にくる確率を求めよ.
(2)さいころを$1$回振るとき,点$\mathrm{P}$の位置の期待値を求めよ.
(3)さいころを$4$回振るとき,点$\mathrm{P}$の位置の期待値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。