タグ「原点」の検索結果

78ページ目:全992問中771問~780問を表示)
新潟大学 国立 新潟大学 2011年 第2問
数直線上の動点Aがはじめ原点にある.動点Aは1秒ごとに数直線上を正の向きまたは負の向きにそれぞれ$\displaystyle \frac{1}{2}$の確率で指定された長さを移動するものとする.$n$秒後に動点Aが原点に戻る確率を$p_n$とする.ただし,$n$は自然数とする.このとき,次の問いに答えよ.

(1)動点Aが1秒ごとに正の向きに1または負の向きに1移動するとき,$p_1,\ p_2,\ p_3,\ p_4$を求めよ.
(2)動点Aが1秒ごとに正の向きに2または負の向きに1移動するとき,$p_6$を求めよ.
山形大学 国立 山形大学 2011年 第4問
$xy$平面上に曲線$\displaystyle y=\frac{1}{x} \ (x>0)$がある.曲線$C$上の点P$\displaystyle \left( t,\ \frac{1}{t} \right)$における接線を$\ell$とし,原点Oから$\ell$に下ろした垂線をOHとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式は$\displaystyle y=-\frac{1}{t^2}x+\frac{2}{t}$であることを示せ.
(2)点Hの座標は$\displaystyle \left( \frac{2t}{1+t^4},\ \frac{2t^3}{1+t^4} \right)$であることを示せ.
(3)直線$\ell$と$y$軸のなす角を$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$とし,線分OHの長さを$d$とする.

\mon[(i)] $t^2,\ d^2$を$\theta$の式で表せ.
\mon[(ii)] $\displaystyle \lim_{\theta \to +0}\frac{d^2}{\theta}$を求めよ.
山形大学 国立 山形大学 2011年 第3問
座標平面上で原点を中心とする角$\theta \ $(ラジアン)の回転移動を表す行列を$R(\theta)$とする.また,$\displaystyle 0<\theta<\pi \ \left( \theta \neq \frac{\pi}{2} \right)$となる$\theta$に対し,直線$y=(\tan \theta)x$に関する対称移動を表す行列を$A(\theta)$とする.このとき,次の問に答えよ.

(1)行列$X=R(\theta)^{-1}A(\theta)R(\theta)$を求めよ.また,$s$に対して$XR(s)X=R(t)$を満たす$t$を求めよ.ただし,$R(\theta)^{-1}$は$R(\theta)$の逆行列である.
(2)$\displaystyle 0<\alpha<\pi,\ 0<\beta<\pi \ \left( \alpha,\ \beta \neq \frac{\pi}{2} \right)$のとき,$A(\alpha) A(\beta)$を求めよ.
(3)$\displaystyle 0<\beta<\frac{\pi}{2}<\alpha<\pi$のとき,$A(\alpha)A(\beta)=A(\beta)A(\alpha)$となるための必要十分条件を$\alpha,\ \beta$を用いて表せ.
(4)$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$で,点$(\tan \alpha,\ \tan \beta)$が曲線$\displaystyle y=\frac{3x-1}{x+3}$上にあるとき,次の\maru{1},\maru{2}に答えよ.

\mon[\maru{1}] $\tan (\alpha-\beta)$の値を求めよ.
\mon[\maru{2}] $A(\alpha)A(\beta)$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第2問
座標平面上において,点A$(0,\ 1)$を中心とし原点Oを通る円$C_1$について,点B$(0,\ -1)$から引いた2本の接線の接点をP,Qとする.ただし,点Pの$x$座標は正とする.さらに,$y$軸に関して対称な放物線$C_2$が直線BPと直線BQにそれぞれ点Pと点Qで接するものとする.このとき,次の各問に答えよ.

(1)2点P,Qの座標を求めよ.
(2)放物線$C_2$を表す方程式を求めよ.
(3)点Aから放物線$C_2$上の各点までの距離は1以上であることを示せ.
(4)円$C_1$の原点Oを含む弧PQと放物線$C_2$で囲まれる部分の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2011年 第4問
座標平面上に点A$(2,\ 0)$をとる.円$C:x^2+y^2=1$上の任意の点P$(\cos \theta,\ \sin \theta) \ (0 \leqq \theta < 2\pi)$における接線を$\ell$とする.直線$\ell$上に点Qを直線AQと$\ell$が直交するようにとる.ただし,直線$\ell$が点Aを通るときは,点Qは点Aであるとする.このとき,次の各問に答えよ.

(1)点Qの座標を,$\theta$を用いて表せ.
(2)線分PQを,点Pが原点Oに一致するように平行移動したとき,点Qが移動した点をR$(\theta)$とする.ただし,点Pと点Qが一致するときは,点R$(\theta)$は原点とする.このとき,点R$(\theta)$の軌跡は円になることを示し,その中心の座標と半径を求めよ.
福井大学 国立 福井大学 2011年 第5問
Oを原点とする座標平面上に3点A$(1,\ 0)$,B$(1,\ 1)$,C$(0,\ c)$がある.ただし,$c$は正の定数とする.$t$を$0 \leqq t \leqq 1$を満たす実数とし,線分AB,BCを$t:(1-t)$に内分する点をそれぞれP,Qとする.ただし,例えば線分ABを$t:(1-t)$に内分する点は,$t=0$のときはA,$t=1$のときはBとする.$\triangle$OPQの面積を$S(t)$とするとき,以下の問いに答えよ.

(1)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
(2)$\displaystyle I=\int_0^1 S(t) \, dt$の値が台形OABCの面積の$\displaystyle \frac{2}{5}$倍に等しくなるとき,$c$と$I$の値をそれぞれ求めよ.
(3)$0 \leqq t <1$に対し,線分QOを$t:(1-t)$に内分する点をRとし,$\triangle$OPRの面積を$T(t)$とする.$T(t)$が$\displaystyle t=\frac{1}{3}$で最大となるような$c$の値と,そのときの$T(t)$の最大値を求めよ.
福井大学 国立 福井大学 2011年 第1問
以下の問いに答えよ.

(1)$\mathrm{O}$を原点とする座標平面上,直線$y=kx \ (k \text{は定数})$に関する対称移動を$f$で表す.また座標平面上の点$\mathrm{P}$に対して,直線$\mathrm{OP}$を$\mathrm{O}$を中心として角$\displaystyle \frac{\pi}{4}$だけ回転して得られる直線$\ell$に$\mathrm{P}$から下ろした垂線と$\ell$の交点を$\mathrm{Q}$とし,$\mathrm{P}$を$\mathrm{Q}$に移す移動を$g$で表す.ただし$\mathrm{O}$は$g$により$\mathrm{O}$自身に移動するものとする.$f,\ g$をこの順に続けて行って得られる移動(合成変換$g \circ f$)を表す行列を$A$とおくとき,$A$およびその逆行列$A^{-1}$を求めよ.
(2)2次の正方行列$M=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$T(M)=a+d,\ D(M)=ad-bc$と定める.このとき以下の命題を証明せよ. \\
「すべての自然数$n$に対して$T(M^n)=\{T(M)\}^n$が成り立つことと,$D(M)=0$であることは,互いに同値である.」
山口大学 国立 山口大学 2011年 第3問
$k$を正の実数とする.点$(3k,\ 4k)$を中心とする半径$5k+1$の円を$C_k$とするとき,次の問いに答えなさい.

(1)円$C_k$が原点を通るかどうかを答えなさい.
(2)$k$がすべての正の実数値をとって変化するとき,円$C_k$の動く範囲を求め,座標平面上に図示しなさい.
東京農工大学 国立 東京農工大学 2011年 第2問
$a,\ b$を実数とする.行列
\[ A=\mat<3,1>[-2,-1,5,4],\quad B=\mat<3,1>[-1,0,0,3],\quad C=\mat<3,1>[1,1,a,b] \]
について,次の問いに答えよ.

(1)$AC=CB$が成り立つときの$a,\ b$を求めよ.
(2)$\tvec<3,1>[x_n,y_n]=(A^{-1})^n \tvec<3,1>[1,3]$によって$x_n,\ y_n \ (n=1,\ 2,\ 3,\ \cdots)$を定める.このとき,$x_n,\ y_n$を$n$の式で表せ.ただし,$A^{-1}$は$A$の逆行列である.
(3)$x_n,\ y_n$は(2)で求めたものとし,Oを原点とする$xy$平面上の点$(x_n,\ y_n)$をP$_n$とする.このとき,${\text{OP}_n}^2>8.3$となるような$n$をすべて求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第2問
Oを原点とする$xy$平面上を動く点Pの時刻$t$における座標$(x,\ y)$が
\[ x=(1+t^2)\cos t,\quad y=(1+t^2)\sin t \]
で与えられている.時刻$t$におけるPの速度を$\overrightarrow{v}$とし,2つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{v}$のなす角を$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$である.

(1)時刻$t$において,ベクトル$\overrightarrow{a}=(\cos t,\ \sin t),\ \overrightarrow{b}=(-\sin t,\ \cos t)$と実数$c,\ d$が$\overrightarrow{v}=c \overrightarrow{a}+d \overrightarrow{b}$を満たすとき,$c,\ d$を$t$を用いて表せ.
(2)$t>0$のとき,$\tan \theta$を$t$を用いて表せ.
(3)$t>0$における$\theta$の最小値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。