タグ「原点」の検索結果

74ページ目:全992問中731問~740問を表示)
一橋大学 国立 一橋大学 2011年 第4問
$a,\ b,\ c$を正の定数とする.空間内に3点A$(a,\ 0,\ 0)$,B$(0,\ b,\ 0)$,C$(0,\ 0,\ c)$がある.

(1)辺ABを底辺とするとき,$\triangle$ABCの高さを$a,\ b,\ c$で表せ.
(2)$\triangle$ABC,$\triangle$OAB,$\triangle$OBC,$\triangle$OCAの面積をそれぞれ$S,\ S_1,\ S_2,\ S_3$とする.ただし,Oは原点である.このとき,不等式
\[ \sqrt{3}S \geqq S_1 +S_2+S_3 \]
が成り立つことを示せ.
(3)(2)の不等式において等号が成り立つための条件を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
円$C_1:x^2+y^2=25$と円$C_2:(x-10)^2+(y-5)^2=50$の$2$つの交点と原点を通る円を$C_3$とする.次の問いに答えよ.

(1)円$C_3$の中心と半径を求めよ.
(2)点P$(x,\ y)$が円$C_3$上を動くとき,$2y-x$の最大値を求めよ.
(3)円$C_1$と円$C_2$の$2$つの交点を通る円の中心の軌跡を求めよ.
(4)円$C_1$と円$C_2$の$2$つの交点を通る円を$C$とする.点Q$(x,\ y)$が円$C$上を動くとき,$2y-x$の最大値が最小となる円$C$の中心と半径を求めよ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
神戸大学 国立 神戸大学 2011年 第2問
$xy$平面上に相異なる4点A,B,C,Dがあり,線分ACと BDは原点Oで交わっている.点Aの座標は$(1,\ 2)$で,線分OAとODの長さは等しく,四角形ABCDは円に内接している.$\angle \text{AOD} = \theta$とおき,点Cの$x$座標を$a$,四角形ABCDの面積を$S$とする.以下の問に答えよ.

(1)線分OCの長さを$a$を用いた式で表せ.また,線分OBとOCの長さは等しいことを示せ.
(2)$S$を$a$と$\theta$を用いた式で表せ.
(3)$\displaystyle \theta = \frac{\pi}{6}$とし,$20 \leqq S \leqq 40$とするとき,$a$のとりうる値の最大値を求めよ.
岡山大学 国立 岡山大学 2011年 第4問
$f(x) = e^{-x^2}$とする.曲線$y = f(x)$上の点A$(a,\ f(a))$における接線を$\ell$,原点$\mathrm{O}$を通り$\ell$に垂直な直線を$\ell^\prime$とし,$\ell$と$\ell^\prime$との交点を$\mathrm{P}$とする.

(1)線分$\mathrm{OP}$の長さを求めよ.
(2)$\ell$と$y$軸との交点を$\mathrm{Q}$とし,$\angle \mathrm{POQ}$を$\theta \ (0 \leqq \theta \leqq \pi)$とする.$\sin \theta$を$a$を用いて表せ.
(3)$(2)$で求めた$\sin \theta$を最大にする$a$の値と,そのときの$\sin \theta$の値を求めよ.
秋田大学 国立 秋田大学 2011年 第2問
関数$f(x)=e^x$について,次の問いに答えよ.

(1)原点から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(2)(1)の接線の接点をP$_1$とする.点P$_1$から$x$軸に下ろした垂線と$x$軸との交点をA$_1(a_1,\ 0)$とする.このとき,点A$_1$から$y=f(x)$のグラフへ引いた接線の方程式を求めよ.
(3)(2)の接線の接点をP$_2$とする.点P$_2$から$x$軸に下ろした垂線と$x$軸との交点をA$_2(a_2,\ 0)$とする.このとき,点A$_2$から$y=f(x)$のグラフへ接線を引き,その接点をP$_3$とする.さらに,点P$_3$から$x$軸に下ろした垂線と$x$軸との交点をA$_3(a_3,\ 0)$とする.このようにして,次々に$x$軸上の点A$_1(a_1,\ 0)$,A$_2(a_2,\ 0)$,A$_3(a_3,\ 0)$,$\cdots$を得る.このとき,数列$a_1,\ a_2,\ a_3,\ \cdots$の一般項$a_n$を推定し,その推定が正しいことを数学的帰納法で証明せよ.
埼玉大学 国立 埼玉大学 2011年 第2問
曲線$C:(x-2)^2+y^2=1$と直線$\ell: y=(\tan \theta)x$を考える.ただし$\displaystyle 0 \leqq \theta < \frac{\pi}{2}$とする.$f(\theta)$を次の(ア),(イ),(ウ)のように定める.

\mon[(ア)] $C$と$\ell$の共有点の個数が1のとき,$f(\theta)$は共有点と原点の距離とする.
\mon[(イ)] $C$と$\ell$の共有点の個数が2以上のとき,$f(\theta)$は共有点と原点の距離のうち最も小さいものとする.
\mon[(ウ)] $C$と$\ell$が共有点を持たないとき,$f(\theta)=0$とする.

さらに,$C$と$\ell$が共有点を持つ$\theta$の最大値を$\alpha$とする.次の問いに答えよ.

(1)$\alpha$を求めよ.
(2)$C$と$\ell$が共有点を持つとき,$f(\theta)$を求めよ.
(3)次の積分を計算せよ.
\[ \int_0^\alpha \{f(\theta)\}^2 \, d\theta \]
大阪大学 国立 大阪大学 2011年 第1問
$a$を自然数とする.$\mathrm{O}$を原点とする座標平面上で行列$A=\left( \begin{array}{cc}
a & -1 \\
1 & a
\end{array} \right)$の表す$1$次変換を$f$とする.

(1)$r>0$および$0 \leqq \theta < 2\pi$を用いて$A=\left( \begin{array}{cc}
r \cos \theta & -r \sin \theta \\
r \sin \theta & r \cos \theta
\end{array} \right)$と表すとき,$r,\ \cos \theta,\ \sin \theta$を$a$で表せ.
(2)点$\mathrm{Q}(1,\ 0)$に対し,点$\mathrm{Q}_n (n = 1,\ 2,\ 3)$を
\[ \mathrm{Q}_1 = \mathrm{Q},\quad \mathrm{Q}_{n+1} = f(\mathrm{Q}_n) \]
で定める.$\triangle \mathrm{OQ}_n \mathrm{Q}_{n+1}$の面積$S(n)$を$a$と$n$を用いて表せ.
(3)$f$によって点$(2,\ 7)$に移されるもとの点$\mathrm{P}$の$x$座標の小数第一位を四捨五入して得られる近似値が$2$であるという.自然数$a$の値を求めよ.またこのとき$S(n)>{10}^{10}$となる最小の$n$の値を求めよ.ただし$0.3 < \log_{10}2 < 0.31$を用いてよい.
広島大学 国立 広島大学 2011年 第1問
実数 $a,\ b$に対して,$2$次正方行列$A$と列ベクトル$B$を
\[ A=\left( \begin{array}{cc}
a & 2-a \\
1+a & 2
\end{array} \right),\quad B=\left( \begin{array}{c}
2b \\
b
\end{array} \right) \]
と定め,$E =\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.等式
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+B \]
により,座標平面上の点P$(x,\ y)$に対し点P$^\prime (x^\prime,\ y^\prime)$が定まるものとする.次の問いに答えよ.

(1)$a = b = -1$のとき,点P$^\prime (3,\ 2)$となる点P$(x,\ y)$を求めよ.
(2)$A^2 = kE \ (k \text{は実数})$を満たすとき,$a,\ k$の値を求めよ.
(3)どんな点Pに対しても点P$^\prime$が原点Oに一致しないための$a,\ b$の条件を求めよ.
弘前大学 国立 弘前大学 2011年 第6問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が次の条件を満たしているものとする.
\[ A \left( \begin{array}{c}
1 \\
1
\end{array} \right) = \left( \begin{array}{c}
\sqrt{\frac{1}{2}} \\
\sqrt{\frac{3}{2}}
\end{array} \right) \quad A \left( \begin{array}{c}
-1 \\
1
\end{array} \right) = \left( \begin{array}{c}
-\sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{2}}
\end{array} \right) \]
このとき,次の問いに答えよ.

(1)$A$および$A^2$を求めよ.
(2)Oを座標平面上の原点とし,Oと異なる点P$(x_1,\ y_1)$があり,他の2点Q$(x_2,\ y_2)$,R$(x_3,\ y_3)$に対して次の関係があるとする.
\[ \left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right) = A^3 \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \qquad \left( \begin{array}{c}
x_3 \\
y_3
\end{array} \right) = A^{-1} \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \]
このとき,三角形OQRが正三角形であることを証明せよ.
(3)点P,Qは(2)と同じものとする.$\angle \text{OPQ}$の大きさを求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。