タグ「原点」の検索結果

69ページ目:全992問中681問~690問を表示)
津田塾大学 私立 津田塾大学 2012年 第4問
曲線$\displaystyle y=\frac{1}{x^2}$の$x>0$の部分を$C_1$とする.また,原点と$C_1$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p^2} \right)$を通る放物線を$C_2$とする.$C_1$と$C_2$が点$\mathrm{P}$において同一の直線に接するとき,次の問に答えよ.

(1)$C_2$の式を$p$を用いて表せ.
(2)$C_2$と$x$軸の交点のうち,原点でない方を$\mathrm{Q}$とおく.点$\mathrm{Q}$を通り$y$軸に平行な直線と,$C_1,\ C_2$で囲まれた領域の面積を求めよ.
津田塾大学 私立 津田塾大学 2012年 第3問
曲線$y=1-x^2$を$C$とする.

(1)$C$上の点$(t,\ 1-t^2)$における法線の方程式を求めよ.
(2)$C$の法線で原点を通るものの本数を求めよ.
(3)点$(a,\ 0)$を通る$C$の法線がただ$1$本であるための$a$の条件を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
昭和大学 私立 昭和大学 2012年 第5問
硬貨を投げて座標平面上の点を移動させるゲームをする.ゲームの規則は,硬貨を投げて表が出たら$x$軸の正の方向に$1$だけ進み,裏が出たら$y$軸の正の方向に$1$だけ進むものとする.点は原点から出発する.以下の各問に答えよ.

(1)点$(3,\ 3)$に到着する確率を求めよ.
(2)点$(1,\ 1)$を通って点$(3,\ 3)$に到着する確率を求めよ.
(3)点$(1,\ 1)$を通るが,点$(2,\ 2)$を通らずに点$(3,\ 3)$に到着する確率を求めよ.
昭和大学 私立 昭和大学 2012年 第3問
次の各問に答えよ.

(1)正の数$a,\ b$が$a^3+b^3=5$を満たすとき,$a+b$のとりうる値の範囲を求めよ.
(2)$x>0,\ x \neq 1$のとき,$\displaystyle 1+\frac{1}{\log_2x}-\frac{3}{\log_3x}<0$を満たす$x$の範囲を求めよ.
(3)点$\mathrm{P}$が楕円$x^2+5(y-1)^2=5$上を動くとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分の長さの最大値を求めよ.
(4)$A=\left( \begin{array}{cc}
3 & -5 \\
2 & -3
\end{array} \right),\ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.$(I+A)^{2012}=mI+nA$となる実数$m,\ n$の値を求めよ.
昭和薬科大学 私立 昭和薬科大学 2012年 第1問
次の問いに答えよ.

(1)$\log_{10}3=a$,$\log_{10}5=b$のとき,$\log_{\frac{3}{2}}48$を$a,\ b$で表すと$\displaystyle \frac{a-[ ]b+[ ]}{a+[ ]b-[ ]}$である.
(2)関数$\displaystyle y=12 \sin \theta+5 \cos \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$について,$y$の取り得る値の範囲は$[ ] \leqq y \leqq [ ]$である.
(3)ある$2$次関数のグラフを$x$軸方向に$4$,$y$軸方向に$-6$平行移動すると,$y=-x^2+6x+6$と一致する.もとの$2$次関数は$y=-x^2-[ ]x+[ ]$である.
(4)赤玉が$5$個,青玉が$4$個入っている袋から$3$個を取り出すとき,少なくとも$1$個が青玉である確率は$\displaystyle \frac{[ ]}{[ ]}$である.
(5)$\triangle \mathrm{ABC}$において,それぞれの辺の長さを$a=3$,$b=\sqrt{7}$,$c=2$とするとき,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線$\mathrm{AH}$の長さは$\sqrt{[ ]}$である.
(6)$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$が定める平面に原点$\mathrm{O}$から垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと
\[ \overrightarrow{\mathrm{OH}}=\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OA}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OB}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OC}} \]
である.
関西学院大学 私立 関西学院大学 2012年 第3問
座標空間の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(2,\ -1,\ 0)$,$\mathrm{C}(1,\ 1,\ 2)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$yz$平面上の点$\mathrm{P}(0,\ a,\ b)$が$\overrightarrow{\mathrm{AP}}=t \overrightarrow{\mathrm{AB}}$を満たすとき,$t$の値および$a,\ b$の値を求めよ.
(2)平面$\alpha$上に点$\mathrm{Q}(2,\ 0,\ c)$がある.$\overrightarrow{\mathrm{AQ}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$を満たす$s,\ t$の値および$c$の値を求めよ.
(3)原点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろすとき,点$\mathrm{H}$の座標を求めよ.また,線分$\mathrm{OH}$の長さを求めよ.
大阪学院大学 私立 大阪学院大学 2012年 第2問
$\mathrm{O}$を原点とし,$y>0$であるような点$\mathrm{A}(x,\ y)$から$x$軸に下ろした垂線の足を$\mathrm{B}(x,\ 0)$とする.いま,点$\mathrm{A}$を,$\mathrm{OA}+\mathrm{AB}=c$($c$は正定数)という条件を満たすように選びたい.次の問いに答えなさい.

(1)点$\mathrm{A}$の座標$(x,\ y)$の満たすべき条件を$y=f(x)$の形の式で表しなさい.また,そのとき点$\mathrm{A}$の$x$座標のとりうる範囲も示しなさい.
(2)$c=2$とするとき,点$\mathrm{A}$の条件を満たす座標$(x,\ y)$のうち,$-1 \leqq x \leqq 1$の範囲での$x+y$の最大値と最小値を求めなさい.
久留米大学 私立 久留米大学 2012年 第5問
点$\mathrm{A}(2,\ 2,\ 3)$と点$\mathrm{B}(2,\ 4,\ 1)$の中点を$\mathrm{M}$,原点を$\mathrm{O}$とする.ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{OM}}$ともに直交する単位ベクトル$\overrightarrow{t}$を成分表示で表すと$[$12$]$となる.また,$\mathrm{AB}$を底辺とする正三角形$\mathrm{ABC}$が$\overrightarrow{\mathrm{OM}} \perp \overrightarrow{\mathrm{MC}}$の条件を満たすとき,頂点$\mathrm{C}$の座標は$[$13$]$となる.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。