タグ「原点」の検索結果

68ページ目:全992問中671問~680問を表示)
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[タ]$までに当てはまる$0$から$9$までの数を求めよ.

$1$個のサイコロを$1$回投げ,出た目の回数だけ$1$枚の硬貨を投げることにする.このとき,$xy$平面上において,動点$\mathrm{A}$は原点$(0,\ 0)$から出発し,硬貨を投げるごとに,表が出れば$x$軸方向に$1$移動し,裏が出れば$y$軸方向に$1$移動する.ただし,サイコロを投げたとき,どの目の出る確率も$\displaystyle \frac{1}{6}$で,硬貨を投げたとき,表,裏の出る確率はどちらも$\displaystyle \frac{1}{2}$であるとする.
サイコロの出た目の回数だけ硬貨を投げ終えたときの$\mathrm{A}$の位置を$(x,\ y)$とする.

(1)$(x,\ y)=(0,\ 6)$である確率は$\displaystyle \frac{[ア]}{[イ][ウ][エ]}$である.

(2)$x=y$である確率は$\displaystyle \frac{[オ][カ]}{[キ][ク]}$である.

(3)$y=0$である確率は$\displaystyle \frac{[ケ][コ]}{[サ][シ][ス]}$である.

(4)$x=1$である確率は$\displaystyle \frac{[セ]}{[ソ][タ]}$である.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)方程式$8 \times 8^x+7 \times 4^x=2^x$の解は$x=[$(\mathrm{a])$}$である.
(2)$\mathrm{O}$を原点$(0,\ 0,\ 0)$とする.ベクトル$\overrightarrow{\mathrm{OP}}=(p,\ q,\ r)$が,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面に垂直で,$|\overrightarrow{\mathrm{OP}}|=1$,$p>0$を満たしているとき,$\overrightarrow{\mathrm{OP}}=[$(\mathrm{b])$}$である.
(3)$a_1=8$,$\displaystyle a_{n+1}=\frac{5}{4}a_n-10 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[$(\mathrm{c])$}$である.
(4)正八面体の各面に$1$から$8$の数字を$1$つずつ書いた八面体サイコロが$2$つある.この$2$つを同時に投げたとき,少なくとも$1$つは$1$の目が出る確率は$[$(\mathrm{d])$}$である.

(5)関数$\displaystyle y=\frac{\log x}{x}$は,$x=[$(\mathrm{e])$}$のとき最大値をとる.

(6)$a \neq 0$とする.方程式$x^3-(a+1)x+a=0$が$1$以外の解を重解としてもつとき,$a=[$(\mathrm{f])$}$であり,そのときの重解は$x=[$(\mathrm{g])$}$である.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
広島工業大学 私立 広島工業大学 2012年 第6問
$\mathrm{O}$を原点とする座標平面上に$3$点$\mathrm{A}(0,\ 2)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$がある.直線$y=a$と線分$\mathrm{AB}$,$\mathrm{AC}$の交点を$\mathrm{P}$,$\mathrm{Q}$とする.ただし,$0<a<2$とする.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\triangle \mathrm{OPQ}$の面積を$a$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$の面積の最大値とそのときの$a$の値を求めよ.
福岡大学 私立 福岡大学 2012年 第3問
$a>0$とし,放物線$C:y=x^2-ax$と$x$軸との共有点で,原点$\mathrm{O}$でない方の共有点を$\mathrm{P}$とする.また,$m>0$とし,直線$\ell:y=mx$と放物線$C$との共有点で,原点$\mathrm{O}$でない方の交点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)放物線$C$上の点$\mathrm{R}$における$C$の接線が直線$\ell$と平行であるとする.そのとき点$\mathrm{R}$と直線$\ell$との距離$d$を$a$と$m$を用いて表せ.
(2)$m=a$のとき,放物線$C$と$x$軸とで囲まれる部分の面積$S$は,三角形$\mathrm{ORQ}$の面積の何倍になるか求めよ.
東北工業大学 私立 東北工業大学 2012年 第5問
$f(x)=x^2-ax+36$とする.ただし,$a>0$とする.

(1)$a=[][]$のとき,$x$が$0$から$2$まで変化する場合の$f(x)$の平均変化率が$-16$となる.また,このとき$f^\prime(u)=0$を満たす値$u$に対して$f(u)=-[][]$となる.
(2)$a=[][]$のとき,$\displaystyle \int_0^3 f(x) \, dx=0$となる.
(3)$a=[][]$のとき,$\displaystyle \int_0^a f(x) \, dx=12a$となる.
(4)$y=f(x)$のグラフに対し,原点を通り,$x>0$の領域でこのグラフに接する接線$\ell$を引く.$a=[][]$のとき,$\ell$とこのグラフとの接点の$y$座標が$12$となる.
北海道薬科大学 私立 北海道薬科大学 2012年 第2問
次の各設問に答えよ.

(1)空間内に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 4)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面上に原点$\mathrm{O}$から垂線を下ろし,この平面との交点を$\mathrm{P}$とする.
\[ \overrightarrow{\mathrm{OP}}=a \overrightarrow{\mathrm{OA}}+b \overrightarrow{\mathrm{OB}}+c \overrightarrow{\mathrm{OC}} \quad (a,\ b,\ c \text{は実数}) \]
とすると$a+b+c=[ア]$となる.また

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=[イウ] a+[エ] b=[オ]$

$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AC}}=[カキ] a+[クケ] c=[コ]$

となる.よって,点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[サ]}{[シ]},\ \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right)$となる.
(2)$4$個のさいころを同時に投げるとき,出た目の積が偶数になる確率は$\displaystyle \frac{[チツ]}{[テト]}$である.また,出た目の積が偶数になる確率が$0.994$以上になるには,同時に投げるさいころの数は最低$[ナ]$個必要である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
福岡大学 私立 福岡大学 2012年 第9問
$\displaystyle f(x)=\frac{(\log x)^2}{x} (x>0)$とする.曲線$C:y=f(x)$上の点$\mathrm{P}(a,\ f(a))$と点$\mathrm{Q}(b,\ f(b))$における曲線$C$の$2$つの接線が共に原点を通るとき,次の問いに答えよ.ただし,$a<b$で,対数は自然対数とする.

(1)$a,\ b$の値と点$\mathrm{Q}(b,\ f(b))$における曲線$C$の法線の方程式を求めよ.
(2)点$\mathrm{P}(a,\ f(a))$における$C$の接線,点$\mathrm{Q}(b,\ f(b))$における$C$の法線,および曲線$C$によって囲まれる部分の面積を求めよ.
成城大学 私立 成城大学 2012年 第3問
座標空間において,$2$点$\mathrm{A}(\sqrt{6},\ 2,\ -\sqrt{6})$,$\mathrm{B}(-\sqrt{2},\ 2 \sqrt{3},\ \sqrt{2})$がある.原点を$\mathrm{O}$とするとき,以下の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の両方に垂直である単位ベクトル$\overrightarrow{p}$をすべて求めよ.
(2)平面$z=1$と直線$\mathrm{OA}$および直線$\mathrm{OB}$との交点を,それぞれ$\mathrm{A}^\prime$,$\mathrm{B}^\prime$とする.このとき線分$\mathrm{A}^\prime \mathrm{B}^\prime$の長さを求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。