タグ「原点」の検索結果

67ページ目:全992問中661問~670問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間において,$4$点
\[ \mathrm{A}_1(1,\ 1,\ 1),\quad \mathrm{B}_1(-1,\ -1,\ 1),\quad \mathrm{C}_1(1,\ -1,\ -1),\quad \mathrm{D}_1(-1,\ 1,\ -1) \]
を考えると,立体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$は正四面体である.このとき,以下の設問に答えよ.

(1)正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面に平行な平面$z=-1+h (0 \leqq h \leqq 2)$で切ったときに出来る図形の面積を$S(h)$とすると,
\[ S(h)=-[$34$]h^2+[$35$]h \]
と表され,$S(h)$は$h=[$36$]$のとき最大値$[$37$]$をとる.(このときの図形はペトリー多角形と呼ばれている.)さらに,
\[ V_1=\int_0^2 S(h) \, dh=\frac{[$38$]}{[$39$]} \]
とおくと,$V_1$は正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$の体積となっている.
(2)三角形$\mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,三角形$\mathrm{C}_1 \mathrm{D}_1 \mathrm{A}_1$,三角形$\mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の重心をそれぞれ$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$,$\mathrm{D}_2$とする.このとき,立体$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$は再び,正四面体となる.(このことを,正四面体は自己双対であるという.)同様に,$n$を自然数として,三角形$\mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,三角形$\mathrm{C}_n \mathrm{D}_n \mathrm{A}_n$,三角形$\mathrm{D}_n \mathrm{A}_n \mathrm{B}_n$,三角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n$の重心をそれぞれ$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$とする.このとき,
\[ \overrightarrow{\mathrm{OA}}_1+\overrightarrow{\mathrm{OA}}_2+\cdots +\overrightarrow{\mathrm{OA}}_n=\frac{[$40$]}{[$41$]} \left\{ 1-\left( -\frac{[$42$]}{[$43$]} \right)^n \right\} \overrightarrow{\mathrm{OA}}_1 \]
である.また,正四面体$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の表面積$S_n$と体積$V_n$は,それぞれ,
\[ S_n=[$44$] \cdot [$45$]^{-[$46$]n+\frac{[$47$]}{2}},\quad V_n=[$48$] \cdot [$49$]^{-[$50$]n+[$51$]} \]
である.
西南学院大学 私立 西南学院大学 2012年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を原点として,以下の問に答えよ.

(1)線分$\mathrm{AB}$を$m:n$に内分する点$\mathrm{P}$の位置ベクトルは
\[ \overrightarrow{\mathrm{OP}}=\frac{n}{m+n} \overrightarrow{\mathrm{OA}}+\frac{m}{m+n} \overrightarrow{\mathrm{OB}} \]
で表されることを示せ.
(2)$\alpha,\ \beta$を実数として,点$\mathrm{Q}$を
\[ \overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}} \]
で表されるベクトルの終点とする.$\alpha,\ \beta$が次のそれぞれの関係式を満たすとき,点$\mathrm{Q}$の存在範囲を図示せよ.ただし,結果に至るプロセスも示すこと.

\mon[$①$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta=1$
\mon[$②$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta \leqq 1$
\mon[$③$] $\alpha \geqq 0,\ \beta \geqq 0,\ 1 \leqq \alpha+\beta \leqq 2$
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
西南学院大学 私立 西南学院大学 2012年 第3問
原点を$\mathrm{O}$とし,下図のように$3$つの円$C_1$,$C_2$,$C_3$が互いに接している.$C_2$の中心を$\mathrm{O}_2$,$C_1$と$C_2$の接点を$\mathrm{P}$,$C_2$と$C_3$の接点を$\mathrm{Q}$,$C_3$と$C_1$の接点を$\mathrm{R}$とする.$C_1$と$C_2$の方程式が
\[ C_1:x^2+y^2=\left( \frac{\sqrt{3}-1}{2} \right)^2,\quad C_2:x^2+(y-\sqrt{3})^2=\left( \frac{\sqrt{3}+1}{2} \right)^2 \]
であるとき,以下の問に答えよ.
(図は省略)

(1)$\displaystyle C_3:(x-[シ])^2+y^2=\left( \frac{[ス]-\sqrt{[セ]}}{[ソ]} \right)^2$である.
(2)弧$\mathrm{RP}$は円$C_1$の短い方の弧を指すものとし,他の弧についても同様とする.また扇形$\mathrm{RPO}$とは弧$\mathrm{RP}$を含む扇形とする.このとき,扇形$\mathrm{PQO}_2$の面積は
\[ \frac{[タ]+\sqrt{[チ]}}{[ツテ]}\pi \]
であることより,$3$つの弧$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$で囲まれる図形(図の斜線部)の面積は
\[ \frac{\sqrt{[ト]}}{[ナ]}-\frac{[ニ]-[ヌ] \sqrt{[ネ]}}{[ノ]} \pi \]
である.
中央大学 私立 中央大学 2012年 第3問
$f(x)=x^2+x+1$とおく.曲線$y=f(x)$に原点から引いた接線の方程式を$y=mx$,$y=m^\prime x (m<m^\prime)$とおく.また,それぞれの接点の$x$座標を$c,\ c^\prime$とおく.このとき,$c<0<c^\prime$である.実数$a$に対して連立不等式
\[ y \leqq f(x),\quad y \geqq mx,\quad y \geqq m^\prime x,\quad a \leqq x \leqq a+1 \]
の表す領域の面積を$S(a)$で表す.このとき,次の問に答えよ.

(1)定数$m,\ m^\prime,\ c,\ c^\prime$を求めよ.
(2)$0<a \leqq c^\prime$のとき,$S(a)$を求めよ.
(3)$c \leqq a \leqq 0$のとき,$S(a)$を求めよ.
(4)$c \leqq a \leqq c^\prime$のとき,$S(a)$の最大値と最小値を求めよ.
中央大学 私立 中央大学 2012年 第2問
$\mathrm{O}$を$xy$平面の原点とする.以下の設問に答えよ.

(1)$xy$平面上の点$\mathrm{A}(a_1,\ a_2)$と点$\mathrm{B}(b_1,\ b_2)$を考える.
\[ a_1>0,\quad a_2>0,\quad b_1>0,\quad b_2<0 \]
であるとき,$\triangle \mathrm{AOB}$の面積を$a_1,\ a_2,\ b_1,\ b_2$を用いて表せ.
(2)対数関数
\[ f(x)=\log_2x,\quad g(x)=\log_{\frac{1}{4}}x \]
に対し,$xy$平面上の曲線
\[ \begin{array}{ll}
C_1:y=f(x) & (x \geqq 1) \\
C_2:y=g(x) & (x \geqq 1)
\end{array} \]
を考える.$C_1$上に点$\mathrm{S}(s,\ f(s))$,$C_2$上に点$\mathrm{T}(t,\ g(t))$をとる.ただし,$s \cdot t=8$とする.このとき$s$を用いて,$\triangle \mathrm{SOT}$の面積$H(s)$を表せ.
(3)$(2)$の$H(s)$に対し,$H(3)$と$H(4)$の大小を比較せよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
東京理科大学 私立 東京理科大学 2012年 第3問
数直線上に動点$\mathrm{P}$がある.$1$個のさいころを投げるという試行により$\mathrm{P}$を次の規則にしたがって,数直線上を移動させる.

$(\mathrm{A})$ 出た目の数が偶数であったら負の方向に$1$だけ移動させる.
$(\mathrm{B})$ 出た目の数が$1$であったら$0$だけ移動させる(その点にとどまる).
$(\mathrm{C})$ $(\mathrm{A})$,$(\mathrm{B})$以外であったら正の方向に$2$だけ移動させる.

最初動点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.

(1)試行を$4$回くり返したとき,規則$(\mathrm{A})$が$a$回,規則$(\mathrm{B})$が$b$回適用されたとすると,$a+b$のとりうる値の範囲は$[ア]$以上$[イ]$以下の整数全体であり,これを満たす$a,\ b$の組合わせは全部で$[ウ][エ]$通りである.
$a=1,\ b=1$となる確率は$\displaystyle \frac{[オ]}{[カ]}$であり,そのときの$\mathrm{P}$の座標の値は$[キ]$である.また,$a=1$となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)試行を$4$回くり返したとき,$\mathrm{P}$が原点$\mathrm{O}$にある確率は$\displaystyle \frac{[コ][サ][シ]}{\kakkofour{ス}{セ}{ソ}{タ}}$である.
(3)試行を$1$回だけ行ったときの$\mathrm{P}$の座標の値の期待値は$\displaystyle \frac{[チ]}{[ツ]}$であり,試行を$4$回くり返したときの$\mathrm{P}$の座標の値の期待値は$\displaystyle \frac{[テ]}{[ト]}$である.
日本女子大学 私立 日本女子大学 2012年 第1問
空間内に$3$点$\displaystyle \mathrm{A} \left( 0,\ \frac{1}{\sqrt{2}},\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{B} \left( 1,\ 0,\ \frac{1}{\sqrt{3}} \right)$,$\displaystyle \mathrm{C} \left( 1,\ \frac{1}{\sqrt{2}},\ 0 \right)$がある.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とする.

(1)平面$\alpha$に関して原点$\mathrm{O}(0,\ 0,\ 0)$と対称な点$\mathrm{R}$の座標を求めよ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。