タグ「原点」の検索結果

64ページ目:全992問中631問~640問を表示)
山口大学 国立 山口大学 2012年 第2問
点$\mathrm{O}$を原点とする空間内に$2$点$\mathrm{P}(1,\ 1,\ 2)$,$\mathrm{Q}(-1,\ a,\ b)$があり,$\mathrm{OP}=\mathrm{OQ}$かつ$\angle \mathrm{POQ}={60}^\circ$が成り立っている.ただし,$a<0$とする.このとき,次の問いに答えなさい.

(1)$a,\ b$の値を求めなさい.
(2)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面上において,$\mathrm{Q}$とは異なる点$\mathrm{R}(x,\ y,\ z)$が$\mathrm{OP}=\mathrm{OR}$かつ$\angle \mathrm{POR}={60}^\circ$をみたすように$x,\ y,\ z$の値を定めなさい.
茨城大学 国立 茨城大学 2012年 第4問
点$\mathrm{O}$を座標平面の原点とする.$a,\ b$を正の実数とする.放物線$C_1:y=ax^2$と放物線$\displaystyle C_2:y=-(x-b)^2+\frac{5}{16}$は,共に,点$\mathrm{P}(x_0,\ y_0)$において直線$\ell$に接しているとする.直線$\ell$と$x$軸との交点を$\mathrm{Q}$とし,$\mathrm{R}(x_0,\ 0)$とする.次の各問に答えよ.

(1)$a,\ b$の条件を求めよ.
(2)線分の長さの比$\mathrm{OQ}:\mathrm{QR}$を求めよ.
(3)$\displaystyle a=\frac{1}{4}$とする.$x$軸と$C_1$と$x \leqq x_0$の部分の$C_2$とで囲まれる図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は原点を出発して,さいころを$1$回投げるごとに,$2$以下の目が出たときには正の向きに$1$だけ進み,$3$以上の目が出たときには負の向きに$2$だけ進むものとする.

(1)さいころを$3$回投げたとき,点$\mathrm{P}$が原点にくる確率は$\displaystyle\frac{[ア]}{[イ]}$である.ただし,[イ]はできるだけ小さな自然数で答えること.
(2)さいころを$5$回投げたとき,点$\mathrm{P}$の座標が$-4$または$2$になる確率は$\displaystyle\frac{[ウ]}{[エ]}$である.ただし,[エ]はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第1問
数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は原点を出発して,さいころを$1$回投げるごとに,$2$以下の目が出たときには正の向きに$1$だけ進み,$3$以上の目が出たときには負の向きに$2$だけ進むものとする.

(1)さいころを$3$回投げたとき,点$\mathrm{P}$が原点にくる確率は$\displaystyle\frac{[ア]}{[イ]}$である.ただし,[イ]はできるだけ小さな自然数で答えること.
(2)さいころを$5$回投げたとき,点$\mathrm{P}$の座標が$-4$または$2$になる確率は$\displaystyle\frac{[ウ]}{[エ]}$である.ただし,[エ]はできるだけ小さな自然数で答えること.
東京理科大学 私立 東京理科大学 2012年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$2$つのベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$が
\[ |\overrightarrow{\mathrm{OA}}| = 2\sqrt{3}, \quad |\overrightarrow{\mathrm{OB}}|=\sqrt{15}, \quad \overrightarrow{\mathrm{OA}}\cdot\overrightarrow{\mathrm{OB}} = 8 \]
を満たしているとする.ここで,$|\overrightarrow{\mathrm{OA}}|,\ |\overrightarrow{\mathrm{OB}}|$はそれぞれ$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$の大きさを表し,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積を表すものとする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とおくと
\[ \cos \theta = \frac{[ア]}{[イウ]} \sqrt{[エ]} \]
となる.\\
\quad また,$\triangle \mathrm{OAB}$の面積は$\sqrt{[オカ]}$である.
(2)線分$\mathrm{AB}$上の点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AB}}$が垂直となるようにとる.このとき,点$\mathrm{C}$は線分$\mathrm{AB}$を$[キ]:[ク]$に内分する点である.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
明治大学 私立 明治大学 2012年 第1問
以下の$[ ]$にあてはまる値を答えよ.

(1)座標平面上の点$\mathrm{P}(x,\ y)$が媒介変数$\theta$を用いて
\[ \begin{array}{l}
x=-\sin \theta+2\cos \theta \\
y= 2\sin \theta+3\cos \theta
\end{array} \]
と表されているとする.このとき,原点を$\mathrm{O}$とすると
\[ \mathrm{OP}^2 = [ア]\sqrt{2} \sin \left( [イ]\theta + \frac{\pi}{[ウ]} \right) + [エ] \]
が成り立つ.
(2)$4$つのサイコロを投げて,出た目の積を$m$とする.

(3)$m=10$となる確率は$\displaystyle\frac{[オ]}{[カ][キ][ク]}$である.また,$m=60$となる確率は$\displaystyle\frac{[ケ]}{[コ][サ][シ]}$である.
(4)$m$が$10$と互いに素になる確率は$\displaystyle\frac{[ス]}{[セ][ソ]}$である.また,$m$が$10$の倍数となる確率は$\displaystyle\frac{[タ][チ][ツ]}{[テ][ト][ナ]}$である.\\
ただし,自然数$a$と$b$が互いに素であるとは,$a$と$b$が$1$以外の公約数を持たないことをいう.

(5)$xy$座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$\mathrm{O}$に正三角形$\mathrm{ABC}$が内接していて,三点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$はその順に反時計回りに位置している.点$\mathrm{A}$の$x$座標と$y$座標はともに正とする.直線$\mathrm{AC}$と$y$軸は点$\mathrm{D}$で交わっていて,点$\mathrm{D}$を通り直線$\mathrm{BC}$に平行な直線は,円$\mathrm{O}$に点$\mathrm{E}$で接するという.このとき,線分$\mathrm{DE}$の長さは$[ニ]$であって,$\tan (\angle \mathrm{ODE}) = [ヌ]$となる.ゆえに,点$\mathrm{A}$の$y$座標は$[ネ]$である.
明治大学 私立 明治大学 2012年 第3問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の成分は,$a+d-1=ad-bc$を満たすとする.また,数列$x_0,\ x_1,\ x_2,\ \cdots$と$y_0,\ y_1,\ y_2,\ \cdots$は
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.座標平面上の点$(x_n,\ y_n)$を$\mathrm{P}_n$と表し,$\mathrm{O}$は原点とする.点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$は同一直線上にはないと仮定し,$g=ad-bc$とおく.
以下の$[ ]$にあてはまるものを,$g,\ n$を用いて表せ.

(1)$\overrightarrow{\mathrm{OP}}_2=([え]) \overrightarrow{\mathrm{OP}}_1+([お]) \overrightarrow{\mathrm{OP}}_0$である.
(2)$g \neq 1$のとき
\[ \overrightarrow{\mathrm{OP}}_n=\frac{[か]}{1-g} \overrightarrow{\mathrm{OP}}_1+\frac{[き]}{1-g} \overrightarrow{\mathrm{OP}}_0 \quad (n=2,\ 3,\ 4,\ \cdots) \]
である.
(3)$|g|<1$のとき
\[ \begin{array}{l}
\lim_{n \to \infty}x_n=[く]x_1+[け]x_0 \\
\lim_{n \to \infty}y_n=[く]y_1+[け]y_0
\end{array} \]
である.
(4)$0<g<1$とする.点$\displaystyle \left( \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n \right)$は線分$\mathrm{P}_1 \mathrm{P}_0$を$[こ]:1$に外分する.
立教大学 私立 立教大学 2012年 第3問
座標平面上に原点$\mathrm{O}$を中心とする半径$1$の円$C$がある.点$\mathrm{P}(p,\ 0)$と点$\mathrm{Q}(0,\ q)$を通る直線が円$C$上の点$\mathrm{R}$において円$C$と接している.ただし,$p>1$,$q>1$とする.このとき,次の問(1)~(4)に答えよ.

(1)$q$を$p$を用いて表せ.
(2)線分$\mathrm{PR}$の長さを$t$とするとき,$p$と$q$を$t$を用いて表せ.
(3)$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を通る円の直径を$d$とするとき,$d^2$を$t$を用いて表せ.
(4)$d$の最小値を求めよ.また,そのときの$p$の値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。