タグ「原点」の検索結果

62ページ目:全992問中611問~620問を表示)
東京学芸大学 国立 東京学芸大学 2012年 第2問
原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$に対して,線分$\mathrm{OA}$上の点$\mathrm{P}$と線分$\mathrm{OB}$上の点$\mathrm{Q}$を,直線$\mathrm{PQ}$が三角形$\mathrm{OAB}$の面積を二等分するようにとる.下の問いに答えよ.

(1)点$\mathrm{Q}$の$y$座標が$t$のとき,直線$\mathrm{PQ}$の方程式と$t$の値の範囲を求めよ.
(2)(1)で求めた範囲で$t$を動かすとき,直線$\mathrm{PQ}$が通る点全体の領域を求め,図示せよ.
島根大学 国立 島根大学 2012年 第4問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
島根大学 国立 島根大学 2012年 第3問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第4問
座標空間内において,4点$(2,\ 0,\ 0)$,$(2,\ 1,\ 0)$,$(-2,\ 1,\ 0)$,$(-2,\ 0,\ 0)$を頂点とする長方形を$x$軸のまわりに回転してできる円柱と,原点を中心とする半径2の球との共通部分の体積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2012年 第2問
座標平面上の2点A$(6,\ 0)$,B$(-2,\ 4)$を結ぶ線分AB上を点Tが移動する.原点Oと点Tを頂点とし,2辺がそれぞれ$x$軸と$y$軸上にある長方形の面積を$S$とする.また,点Tの座標を$(x,\ f(x))$とし,$S$を$x$の関数として$S(x)$と表す.次の各問に解答しなさい.

(1)$f(x)$と$S(x)$を$x$で表しなさい.さらに,区間$-2 \leqq x \leqq 6$における$y=S(x)$のグラフの概形を図示しなさい.
(2)直線$x=-2$と曲線$y=S(x)$および$x$軸で囲まれた図形の面積を求めなさい.
(3)区間$-2 \leqq x \leqq 4$における任意の$x$の値について,区間$x \leqq t \leqq x+2$における関数$S(t)$の最大値を$x$の関数として$M(x)$と定義する.関数$M(x)$を$x$で表し,さらに$y=M(x)$のグラフの概形を図示しなさい.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
長崎大学 国立 長崎大学 2012年 第7問
原点$\mathrm{O}$を中心とし,半径1の円を$C$とする.次の問いに答えよ.

(1)直線$y=2$上の点$\mathrm{P}(t,\ 2)$から円$C$に2本の接線を引き,その接点を$\mathrm{M},\ \mathrm{N}$とする.直線$\mathrm{OP}$と弦$\mathrm{MN}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.ただし,$t$は実数とする.
(2)点$\mathrm{P}$が直線$y=2$上を動くとき,点$\mathrm{Q}$の軌跡を求めよ.
東京農工大学 国立 東京農工大学 2012年 第2問
空間のベクトル$\overrightarrow{a},\ \overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{a}=\left( \frac{1}{2},\ \frac{\sqrt{3}}{2},\ 0 \right),\quad \overrightarrow{p}=\left( 1,\ \frac{\sqrt{3}}{3},\ 1 \right),\quad \overrightarrow{q}=(-1,\ \sqrt{3},\ 2) \]
で定める.また$\alpha=\overrightarrow{p} \cdot \overrightarrow{a},\ \beta=\overrightarrow{q} \cdot \overrightarrow{a}$とおく.次の問いに答えよ.

(1)$\overrightarrow{b}=\overrightarrow{p}-\alpha \overrightarrow{a}$とする.$\overrightarrow{b}$を成分で表せ.
(2)$\displaystyle \overrightarrow{c}=\overrightarrow{q}-\beta \overrightarrow{a}-\frac{\overrightarrow{q} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}$とする.$\overrightarrow{c}$を成分で表せ.
(3)座標空間の原点を$\mathrm{O}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$となる3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$に対して,四面体$\mathrm{OABC}$の体積$V$を求めよ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。