タグ「原点」の検索結果

61ページ目:全992問中601問~610問を表示)
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
香川大学 国立 香川大学 2012年 第3問
放物線$C:y=x(x-a)$について,次の問に答えよ.ただし,$a>0$とする.

(1)直線$\ell:y=ax$と,$C$との交点で,原点とは異なる点の座標を求めよ.
(2)$C$と$x$軸とで囲まれた図形の面積を求めよ.
(3)$C$と$\ell$とで囲まれた図形$D$の面積を求めよ.
(4)点$(a,\ 0)$を通り,図形$D$の面積を2等分する直線の方程式を求めよ.
香川大学 国立 香川大学 2012年 第2問
$C_1$を,中心が$(1,\ 1)$,半径が1の円とする.円$C_2,\ C_3,\ C_4,\ \cdots$を次のように定める.

円$C_n$は,$x$軸,$y$軸および円$C_{n-1}$に接し,円$C_n$の半径$r_n$は,円$C_{n-1}$の半径$r_{n-1}$よりも小さいものとする.

このとき,次の問に答えよ.

(1)Oを原点とし,$n=2,\ 3,\ 4,\ \cdots$に対してP$_n$を$C_n$と$C_{n-1}$の接点とするとき,OP$_n$の長さを$r_n$で表せ.
(2)$r_n$と$r_{n-1}$の関係式を求め,数列$\{r_n\}$が等比数列であることを示せ.
(3)円$C_6$は,原点を中心とした半径$\displaystyle \frac{1}{1000}$の円の内部に含まれることを示せ.
群馬大学 国立 群馬大学 2012年 第3問
点$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と点$\mathrm{P}_0(-1,\ 0)$をとる.点$\mathrm{P}_0$を通り,ベクトル$\overrightarrow{d}=(3,\ \sqrt{3})$に平行な直線を$\ell$とする.$\ell$上の点の列
\[ \mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n,\ \cdots \]
を$n=1,\ 2,\ \cdots$について,直線$\mathrm{OP}_n$と直線$\mathrm{AP}_{n-1}$とが垂直であるようにとる.また$t_n$を$\overrightarrow{\mathrm{OP}_n}=\overrightarrow{\mathrm{OP}_0}+t_n \overrightarrow{d}$を満たす実数とする.このとき以下の問いに答えよ.

(1)$t_1$の値を求めよ.
(2)数列$\{t_n\}$の漸化式を求めよ.
(3)点$\mathrm{P}_n$の$x$座標が$\displaystyle \frac{33}{67}$となるときの$n$の値を求めよ.
群馬大学 国立 群馬大学 2012年 第3問
点$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と点$\mathrm{P}_0(-1,\ 0)$をとる.点$\mathrm{P}_0$を通り,ベクトル$\overrightarrow{d}=(3,\ \sqrt{3})$に平行な直線を$\ell$とする.$\ell$上の点の列
\[ \mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n,\ \cdots \]
を$n=1,\ 2,\ \cdots$について,直線$\mathrm{OP}_n$と直線$\mathrm{AP}_{n-1}$とが垂直であるようにとる.また$t_n$を$\overrightarrow{\mathrm{OP}_n}=\overrightarrow{\mathrm{OP}_0}+t_n \overrightarrow{d}$を満たす実数とする.このとき以下の問いに答えよ.

(1)$t_1$の値を求めよ.
(2)数列$\{t_n\}$の漸化式を求めよ.
(3)点$\mathrm{P}_n$の$x$座標が$\displaystyle \frac{33}{67}$となるときの$n$の値を求めよ.
群馬大学 国立 群馬大学 2012年 第2問
点$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と点$\mathrm{P}_0(-1,\ 0)$をとる.点$\mathrm{P}_0$を通り,ベクトル$\overrightarrow{d}=(3,\ \sqrt{3})$に平行な直線を$\ell$とする.$\ell$上の点の列
\[ \mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n,\ \cdots \]
を$n=1,\ 2,\ \cdots$について,直線$\mathrm{OP}_n$と直線$\mathrm{AP}_{n-1}$とが垂直であるようにとる.また$t_n$を$\overrightarrow{\mathrm{OP}_n}=\overrightarrow{\mathrm{OP}_0}+t_n \overrightarrow{d}$を満たす実数とする.このとき以下の問いに答えよ.

(1)$t_1$の値を求めよ.
(2)数列$\{t_n\}$の漸化式を求めよ.
(3)$t_2,\ t_3,\ t_4$の値を求めよ.
香川大学 国立 香川大学 2012年 第3問
曲線$C:y=x \sin x$について,次の問に答えよ.

(1)$C$の接線のうち,原点を通る接線の方程式をすべて求めよ.
(2)直線$\displaystyle y=\frac{1}{2}x$と$C$との交点のうち,第1象限にあるものを$x$座標の小さい方から順にP$_1$,P$_2$,P$_3$,$\cdots$とする.線分P$_{2n-1}$P$_{2n}$と$C$で囲まれた図形の面積$S_n$を求めよ.
(3)点Q$_n \displaystyle \left( \frac{\pi}{2}+2(n-1)\pi,\ \frac{\pi}{2}+2(n-1)\pi \right)$に対して,$\triangle$P$_{2n-1}$P$_{2n}$Q$_n$の面積を$T_n$とする.このとき,$n$によらずに$\displaystyle \frac{S_n}{T_n}$が一定であることを示せ.
群馬大学 国立 群馬大学 2012年 第3問
点$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と点P$_0(-1,\ 0)$をとる.点$\mathrm{P}_0$を通り,ベクトル$\overrightarrow{d}=(3,\ \sqrt{3})$に平行な直線を$\ell$とする.$\ell$上の点の列
\[ \mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n,\ \cdots \]
を$n=1,\ 2,\ \cdots$について,直線$\mathrm{OP}_n$と直線$\mathrm{AP}_{n-1}$とが垂直であるようにとる.また$t_n$を$\overrightarrow{\mathrm{OP}_n}=\overrightarrow{\mathrm{OP}_0}+t_n \overrightarrow{d}$を満たす実数とする.このとき以下の問いに答えよ.

(1)$t_1$の値を求めよ.
(2)数列$\{t_n\}$の漸化式を求めよ.
(3)点$\mathrm{P}_n$の$x$座標が$\displaystyle \frac{33}{67}$となるときの$n$の値を求めよ.
徳島大学 国立 徳島大学 2012年 第3問
2次の正方行列$A$で表される1次変換を$f$とする.Oを原点とする座標平面上に,異なる2点P$(x_1,\ y_1)$,Q$(x_2,\ y_2)$があって,次の2つの条件を満たす.

条件1:1次変換$f$により,点Pは点$(-2x_2,\ -2y_2)$に移る.
条件2:合成変換$f \circ f$により,点Qは点$(4x_1,\ 4y_1)$に移る.


(1)行列$A^3$で表される1次変換により,点Pは点$(-8x_1,\ -8y_1)$に,点Qは点$(-8x_2,\ -8y_2)$に移ることを示せ.
(2)3点O,P,Qは同一直線上にないことを示し,$x_1y_2-x_2y_1 \neq 0$を示せ.
(3)$A^3=-8E$を示せ.ただし,$E$は2次の単位行列である.
徳島大学 国立 徳島大学 2012年 第4問
座標平面上に2点P$(x,\ 2)$,Q$(1-\sqrt{3},\ y)$がある.

(1)原点を中心とする$60^\circ$の回転移動によって点Pが点Qに移るとき,$x$と$y$の値を求めよ.
(2)$x$と$y$は(1)で求めた値とする.点Pを点Qに,点Qを点Pに移す1次変換を表す行列$A$を求めよ.
(3)自然数$n$と(2)で求めた行列$A$に対し
\[ A+2A^2+3A^3+4A^4+\cdots +(2n-1)A^{2n-1}+2nA^{2n} \]
を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。