タグ「原点」の検索結果

59ページ目:全992問中581問~590問を表示)
筑波大学 国立 筑波大学 2012年 第5問
以下の問いに答えよ.

(1)座標平面において原点のまわりに角$\theta \ (0<\theta<\pi)$だけ回転する移動を表す行列を$A$とする.$A$が等式$A^2-A+E=O$を満たすとき,$\theta$と$A$を求めよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\ O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$である.
(2)直線$y=\sqrt{3}x$に関する対称移動を表す行列$B$を求めよ.
(3)直線$y=kx$に関する対称移動を表す行列$C$とする.(1),(2)において求めた行列$A,\ B$に対して$BC=A$が成り立つとき,$k$を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2012年 第2問
$a^2+b^2=1$を満たす正の実数$a,\ b$の組$(a,\ b)$の全体を$S$とする.$S$に含まれる$(a,\ b)$に対し,$xyz$空間内に3点P$(a,\ b,\ b)$,Q$(-a,\ b,\ b)$,R$(0,\ 0,\ b)$をとる.また原点をOとする.このとき以下の各問いに答えよ.

(1)三角形OPQを$x$軸のまわりに1回転してできる立体を$F_1$とする.$(a,\ b)$が$S$の中を動くとき,$F_1$の体積の最大値を求めよ.
(2)三角形PQRを$x$軸のまわりに1回転してできる立体を$F_2$とする.$\displaystyle a=b=\frac{1}{\sqrt{2}}$のとき,$F_2$の$xy$平面による切り口の周を$xy$平面上に図示せよ.
(3)三角形OPRを$x$軸のまわりに1回転してできる立体を$F_3$とする.$(a,\ b)$が$S$の中を動くとき,$F_3$の体積の最大値を求めよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
千葉大学 国立 千葉大学 2012年 第11問
$xy$平面において,長さ$1$の線分$\mathrm{AB}$を点$\mathrm{A}$が原点,点$\mathrm{B}$が点$(1,\ 0)$に重なるように置く.点$\mathrm{A}$を$y$軸に沿って点$(0,\ 1)$まで移動させ,線分$\mathrm{AB}$の長さを$1$に保ったまま点$\mathrm{B}$を$x$軸に沿って原点まで移動させる.このとき線分$\mathrm{AB}$が通る領域を$D$とする.$0 \leqq x \leqq 1$となる実数$x$に対して,点$(x,\ y)$が領域$D$に含まれるような$y$の最大値を$f(x)$とする.

(1)$f(x)$を$x$の式で表せ.
(2)領域$D$を$x$軸を中心に回転させた立体の体積$V$を求めよ.
岩手大学 国立 岩手大学 2012年 第2問
座標空間内に3点A$(2,\ 2,\ 0)$,B$(0,\ 2,\ 2)$,C$(2,\ 0,\ 2)$がある.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.ただし,$0^\circ < \theta < 180^\circ$とする.
(2)$\triangle$ABCの面積を求めよ.
(3)原点Oから平面ABCに垂線をおろし,平面ABCとの交点をHとする.点Hは平面ABC上にあるから$\overrightarrow{\mathrm{OH}}=r\overrightarrow{\mathrm{OA}}+s\overrightarrow{\mathrm{OB}}+t\overrightarrow{\mathrm{OC}} \ (r+s+t=1)$と表すことができる.このとき,$r,\ s,\ t$を求めよ.
(4)四面体OABCの体積を求めよ.
(5)球$P$が四面体OABCのすべての面に接している.このとき,球$P$の半径を求めよ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\alpha>1,\ x>0$とする.Oを原点とする座標平面上に3点A$(0,\ 1)$,B$(0,\ \alpha)$,P$(\sqrt{x},\ 0)$がある.次に答えよ.

(1)$\sin \angle \text{OPB}$と$\sin \angle \text{APB}$を$\alpha$と$x$を用いて表せ.
(2)$\sin \angle \text{APB}$を$x$の関数と考え,その関数を$f(x)$とおく.$f(x)$の最大値を$\alpha$を用いて表せ.
(3)(2)で求めた最大値が$\displaystyle \frac{1}{2}$となる$\alpha$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2012年 第2問
関数$f(x)=(4x^3-5x)e^{-x^2}$について,以下の問いに答えよ.

(1)関数$f(x)$の増減を調べ,極値を求めよ.
(2)曲線$y=f(x)$の接線で,原点を通り,かつ傾きが正のものを求めよ.
(3)(2)で求めた接線と曲線$y=f(x)$で囲まれる2つの部分の面積の和を求めよ.
高知大学 国立 高知大学 2012年 第3問
$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を負でない実数を成分とする行列とし,$C$を原点を中心とする半径5の円とする.円$C$上の任意の点$(x,\ y)$に対して$\biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr)=A \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr)$で与えられる$X,\ Y$は常に$9X^2-16Y^2=0$をみたしているとする.このとき,次の問いに答えよ.

(1)$A \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr)$を$a,\ b,\ c,\ d$を用いて表せ.
(2)$c=0$のとき,$b$を$d$で表せ.
(3)$A \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr) = \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr)$となる$A$を1つ求めよ.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。