タグ「原点」の検索結果

49ページ目:全992問中481問~490問を表示)
山口大学 国立 山口大学 2013年 第4問
原点を出発点として数直線上を動く点$\mathrm{P}$がある.次のような試行を考える.さいころを$1$回投げて,$5$以上の目が出たときは点$\mathrm{P}$を正の向きに$1$だけ進め,$4$以下の目が出たときは負の向きに$2$だけ進める.このような試行について,次の問いに答えなさい.

(1)この試行を$3$回行うとき,点$\mathrm{P}$が原点の位置にくる確率を求めなさい.
(2)この試行を$9$回行うとき,点$\mathrm{P}$が$3$回目と$9$回目に原点の位置にくる確率を求めなさい.
(3)この試行を$9$回行うとき,点$\mathrm{P}$が$3$回目と$9$回目のみ原点の位置にくる確率を求めなさい.
山口大学 国立 山口大学 2013年 第4問
原点を出発点として数直線上を動く点$\mathrm{P}$がある.次のような試行を考える.さいころを$1$回投げて,$5$以上の目が出たときは点$\mathrm{P}$を正の向きに$1$だけ進め,$4$以下の目が出たときは負の向きに$2$だけ進める.このような試行について,次の問いに答えなさい.

(1)この試行を$3$回行うとき,点$\mathrm{P}$が原点の位置にくる確率を求めなさい.
(2)この試行を$9$回行うとき,点$\mathrm{P}$が$3$回目と$9$回目に原点の位置にくる確率を求めなさい.
(3)この試行を$9$回行うとき,点$\mathrm{P}$が$3$回目と$9$回目のみ原点の位置にくる確率を求めなさい.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
愛媛大学 国立 愛媛大学 2013年 第2問
行列$\left( \begin{array}{cc}
\displaystyle\frac{5}{2} & -\displaystyle\frac{1}{4} \\
a & b
\end{array} \right)$で表される$1$次変換を$f$とする.$f$は$3$点$\mathrm{A}(1,\ m)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(m,\ -1)$に対して,次の$2$つの条件$①,\ ②$を満たすものとする.ただし,$\mathrm{O}$は原点である.

$①$ $\mathrm{A}$の$f$による像は$\mathrm{A}$自身である
$②$ $\mathrm{B}$の$f$による像を$\mathrm{B}^\prime$とすると,$\overrightarrow{\mathrm{BB^\prime}}$と$\overrightarrow{\mathrm{OC}}$は垂直である


(1)$a,\ b,\ m$の値を求めよ.
(2)$\mathrm{P}(x,\ y)$を任意の点とし,$\mathrm{P}$の$f$による像を$\mathrm{P}^\prime$とする.$\overrightarrow{\mathrm{PP^\prime}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(3)点$\mathrm{Q}(t,\ t^2-1)$の$f$による像を$\mathrm{Q}^\prime$とする.$|\overrightarrow{\mathrm{QQ^\prime}}|$の値が最小となる実数$t$の値を求めよ.
愛媛大学 国立 愛媛大学 2013年 第4問
原点を$\mathrm{O}$とする座標空間内に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,次の条件$①,\ ②,\ ③,\ ④$を満たすとする.

$①$ $\mathrm{A}$は$xy$平面上の点で$\mathrm{OA}=1$
$②$ $\mathrm{B}$,$\mathrm{C}$は$yz$平面上の点で,$y$軸に関して対称である
$③$ $\triangle \mathrm{OAB}$は正三角形である
$④$ $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は$y$軸上にない


(1)$\mathrm{B}$の$y$座標を$t$とするとき,$t$がとり得る値の範囲を求めよ.
(2)四面体$\mathrm{OABC}$の表面積の最大値を求めよ.
(3)表面積が最大となる四面体$\mathrm{OABC}$を$x$軸,$y$軸,$z$軸の周りに回転してできる立体の体積をそれぞれ$V_x$,$V_y$,$V_z$とするとき,$V_x$,$V_y$,$V_z$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第4問
$-1<x<1$で定義される関数$f(x)=2x+\sqrt{5-5x^2}$について,座標平面上の曲線$C:y=f(x)$を考える.このとき,次の各問に答えよ.

(1)曲線$C$は上に凸であることを示し,$f(x)$の最大値を求めよ.
(2)曲線$C$上の点のうち,原点$\mathrm{O}$との距離が最大となる点を$\mathrm{A}$,最小となる点を$\mathrm{B}$とするとき,$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めよ.
(3)(2)で求めた点$\mathrm{A}$,$\mathrm{B}$について,線分$\mathrm{OA}$,線分$\mathrm{OB}$,および曲線$C$で囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
最初,数直線上の原点に点$\mathrm{P}$を置き,コインを$1$回投げるごとに以下のように点$\mathrm{P}$の位置を定める.

\mon[$①$] 点$\mathrm{P}$の座標が$-2$以上$3$以下のとき,コインの表が出れば正の向きに$1$だけ点$\mathrm{P}$を進め,裏が出れば負の向きに$1$だけ点$\mathrm{P}$を進める.
\mon[$②$] 点$\mathrm{P}$の座標が$-3$または$4$のとき,コインの表裏にかかわらず点$\mathrm{P}$を動かさない.

コインを投げて$①,\ ②$に従い点$\mathrm{P}$の位置を定める操作を$6$回行う.この$6$回の操作によって定めた点$\mathrm{P}$の最終的な位置の座標を$a$とする.ただし,コインの表と裏が出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする.このとき,次の各問に答えよ.

(1)$a=-3$となる確率と$a=4$となる確率をそれぞれ求めよ.
(2)$a$の期待値を求めよ.
島根大学 国立 島根大学 2013年 第4問
空間における$3$点$\mathrm{A}(1,\ 1,\ -1)$,$\mathrm{B}(3,\ 2,\ 1)$,$\mathrm{C}(-1,\ 3,\ 0)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$は直角二等辺三角形であることを示せ.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,その交点を$\mathrm{H}$とするとき,点$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に外接する球の中心の座標を求めよ.
島根大学 国立 島根大学 2013年 第1問
$3$次関数$f(x)$は$x=1$と$x=3$で極値をとり,曲線$y=f(x)$は点$(0,\ 1)$と点$(1,\ 3)$を通るとする.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)曲線$y=f(x)$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(3)曲線$y=f(x)$に接し,原点$(0,\ 0)$を通る直線の本数を求めよ.
島根大学 国立 島根大学 2013年 第2問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。