タグ「原点」の検索結果

48ページ目:全992問中471問~480問を表示)
東京農工大学 国立 東京農工大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)=\log (x+\sqrt{x^2+1})$とする.ただし,対数は自然対数とする.

(i) $f(x)$の導関数$f^\prime(x)$を求めよ.
(ii) 直線$y=x$と直線$\displaystyle x=\frac{3}{4}$および曲線$y=f(x)$で囲まれた部分の面積$S$を求めよ.

(2)$\displaystyle \alpha=\frac{2}{5}\pi$とする.

(i) $\cos 3\alpha=\cos 2\alpha$が成り立つことを用いて,$\cos \alpha$と$\cos 2\alpha$の値を求めよ.
(ii) $2$個のさいころを同時に投げるとき,出る目の数の和を$N$とする.このとき,座標平面上の点$\mathrm{P}(1,\ \sqrt{3})$を原点$\mathrm{O}$のまわりに角$N \alpha$だけ回転した点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積を$T$とする.$T$の期待値を求めよ.
群馬大学 国立 群馬大学 2013年 第5問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円周$C$上に定点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$をとる.$C$の上半円周($y$座標が正の部分)上を動く点を$\mathrm{P}$,下半円周($y$座標が負の部分)上を動く点を$\mathrm{Q}$とする.$\displaystyle \angle \mathrm{PAB}=\alpha \ \left( 0<\alpha<\frac{\pi}{2} \right)$,$\displaystyle \angle \mathrm{QAB}=\beta \ \left( 0<\beta<\frac{\pi}{2} \right)$とし,直線$\mathrm{PQ}$と$x$軸との交点を$\mathrm{R}(t,\ 0)$とする.

(1)$t$を$\alpha,\ \beta$を用いて表せ.
(2)$\displaystyle \alpha+\beta=\frac{\pi}{4}$のとき,$t$のとり得る値の範囲を求めよ.
(3)線分$\mathrm{PR}$の長さと線分$\mathrm{RQ}$の長さの比が$2:1$のとき,$t$を$\alpha$を用いて表せ.
群馬大学 国立 群馬大学 2013年 第15問
原点$\mathrm{O}$を中心とする半径$2$の円を$\mathrm{A}$とする.半径$1$の円(以下,「動円」と呼ぶ)は,円$\mathrm{A}$に外接しながら,すべることなく転がる.ただし,動円の中心は円$\mathrm{A}$の中心に関し反時計回りに動く.動円上の点$\mathrm{P}$の始めの位置を$(2,\ 0)$とする.動円の中心と原点を結ぶ線分が$x$軸の正方向となす角を$\theta$として,$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かしたときの$\mathrm{P}$の軌跡を$C$とする.
(図は省略)

(1)$C$を媒介変数$\theta$を用いて表せ.
(2)$\mathrm{P}$の$y$座標が$\displaystyle \frac{1}{2}$のとき,$\mathrm{P}$での$C$の接線の傾きを求めよ.
(3)$C$の長さを求めよ.ただし,曲線$x=f(\theta),\ y=g(\theta) \ (\alpha \leqq \theta \leqq \beta)$の長さは \\
$\displaystyle \int_\alpha^\beta \sqrt{\left( \frac{dx}{d\theta} \right)^2+\left( \frac{dy}{d\theta} \right)^2} \, d\theta$で与えられる.
福井大学 国立 福井大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(1)点$\mathrm{R}$の座標が$(\sin 2t \sin t,\ \sin 2t \cos t)$で表されることを証明せよ.
(2)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くとき,点$\mathrm{R}$の描く曲線を$C$と表す.曲線$C$上で,$y$座標が最大となる点の座標を求めよ.
(3)曲線$C$と直線$y=x$で囲まれる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第3問
次の問いに答えよ.

(1)$m,\ n$を自然数とするとき,次の不定積分を計算せよ.
\[ \int \cos mx \cos nx \, dx \]
(2)$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くときに$\mathrm{R}$の描く曲線と,直線$y=x$により囲まれる図形の面積を求めよ.
山口大学 国立 山口大学 2013年 第3問
$xy$平面において,曲線$\displaystyle y=\frac{x}{x^2+1}$と$\displaystyle y=\frac{x^2}{2}$の原点以外の交点を$\mathrm{P}$とする.また,この$2$つの曲線で囲まれた図形を$D$とする.このとき,次の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)$D$の面積を求めなさい.
(3)$D$を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
山口大学 国立 山口大学 2013年 第3問
$xy$平面において,方程式$x+3y=6$で表される直線を$\ell_0$とし,方程式$y=x^2-1$で表される放物線を$C_0$とする.$\ell_0$に関して$C_0$と対称な放物線を$C_1$とするとき,次の問いに答えなさい.

(1)点$\mathrm{P}(a,\ b)$と点$\mathrm{Q}(c,\ d)$が$\ell_0$に関して対称であるとき,$a,\ b$を用いて$c$と$d$を表しなさい.
(2)$C_1$上の点のうち,$x$座標が最も大きい点の座標を求めなさい.
(3)原点を通る直線$\ell_1$に関して$C_1$と対称な放物線を$C_2$とする.$C_2$が放物線$x=-y^2$を平行移動して得られる放物線に一致するとき,$\ell_1$の方程式を求めなさい.
防衛医科大学校 国立 防衛医科大学校 2013年 第2問
座標平面上に,原点$\mathrm{O}$を中心とする半径$5$の円$C$,点$\mathrm{A}(0,\ 7)$,点$\mathrm{B}(1,\ 6)$が与えられている.点$\mathrm{P}(\alpha,\ \beta)$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円を$C(\mathrm{P})$として,以下の問に答えよ.

(1)$\alpha,\ \beta$の満たすべき条件を求めよ.
(2)$2$円$C,\ C(\mathrm{P})$が共有点をもつための条件を$\alpha$のみを用いて表せ.
岐阜大学 国立 岐阜大学 2013年 第1問
$a,\ b$を正の実数とする.$xy$平面上の放物線$y=x^2-2ax$と直線$y=bx$は原点$\mathrm{O}$と点$\mathrm{A}$の異なる$2$点で交わる.また,放物線の頂点を$\mathrm{B}$とし,三角形$\mathrm{OAB}$を考える.以下の問に答えよ.

(1)点$\mathrm{A}$および点$\mathrm{B}$の座標を求めよ.
(2)三角形$\mathrm{OAB}$が直角三角形のとき,$a$と$b$の満たすべき条件を求めよ.
(3)$a=b$のとき,$\cos \angle \mathrm{AOB}$を$a$を用いて表せ.
(4)$a=b$のとき,三角形$\mathrm{OAB}$の面積を$a$を用いて表せ.
愛媛大学 国立 愛媛大学 2013年 第2問
$2$つの直線$\ell_1:y=-2x+3$と$\ell_2:y=5$の交点を$\mathrm{A}$,$\ell_2$と$y$軸の交点を$\mathrm{B}$とする.

(1)点$\mathrm{A}$の座標を求めよ.
(2)$\mathrm{O}$を原点とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を求めよ.
(3)(2)で求めた円を$C_1$とし,円$x^2+y^2=4$を$C_2$とする.

(i) 点$(\alpha,\ \beta)$が$C_1$と$C_2$の交点であるとき
\[ \alpha-5 \beta+4=0 \]
が成り立つことを示せ.
(ii) $C_1$と$C_2$の$2$つの交点を結ぶ線分の長さを求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。