タグ「原点」の検索結果

47ページ目:全992問中461問~470問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2013年 第2問
$\mathrm{O}$を原点とする座標平面上の円$x^2+y^2-10x-10y+49=0$を$C$とする.原点$\mathrm{O}$を通り,円$C$に接する直線のうち,傾きの大きい方を$\ell$とする.

(1)$\ell$の傾きを求めよ.
(2)$x$軸に接し,円$C$と外接するような円の中心$\mathrm{P}$の描く軌跡を求めよ.
(3)直線$\ell$と$x$軸に接し,さらに円$C$と外接する円の半径をすべて求めよ.
群馬大学 国立 群馬大学 2013年 第11問
$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-1,\ 3)$とし$\overrightarrow{p}=(1-2t)\overrightarrow{a}+t \overrightarrow{b}$とする.$t$は$-1 \leqq t \leqq 1$を動くとする.

(1)$|\overrightarrow{p}|$の最大値を求めよ.
(2)$|\overrightarrow{p}|$の最小値を求めよ.
(3)$|\overrightarrow{p}|$が最小となるときの$\overrightarrow{p}$を位置ベクトルとする点を$\mathrm{M}$とする.$\overrightarrow{a}$を位置ベクトルとする点を$\mathrm{A}$とするとき,$\triangle \mathrm{OAM}$の面積を求めよ.ただし,$\mathrm{O}$は原点である.
大分大学 国立 大分大学 2013年 第3問
曲線$y=x^2$の上を動く点$\mathrm{P}(x,\ y)$がある.この動点の速度ベクトルの大きさが一定$C$のとき,次の問いに答えよ.ただし,動点$\mathrm{P}(x,\ y)$は時刻$t$に対して$x$が増加するように動くとする.

(1)$\mathrm{P}(x,\ y)$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$を$x$で表せ.
(2)$\mathrm{P}(x,\ y)$の加速度ベクトル$\displaystyle \overrightarrow{\alpha}=\left( \frac{d^2x}{dt^2},\ \frac{d^2y}{dt^2} \right)$を$x$で表せ.
(3)半径$r$の円$x^2+(y-r)^2=r^2$上を速度ベクトルの大きさが一定$C$で動く点$\mathrm{Q}$があるとき,この加速度ベクトルの大きさを求めよ.
(4)動点$\mathrm{P}$と$\mathrm{Q}$の原点$(0,\ 0)$での加速度ベクトルの大きさが等しくなるときの半径$r$を求めよ.
山形大学 国立 山形大学 2013年 第4問
行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -1 \\
1 & -\displaystyle\frac{1}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
p & -2 \\
1 & q
\end{array} \right),\quad J=\left( \begin{array}{cc}
\displaystyle\frac{1}{2} & 1 \\
0 & \displaystyle\frac{1}{2}
\end{array} \right) \]
が$AB=BJ$を満たすとき,次の問いに答えよ.ただし,$p,\ q$は定数であり,以下で用いる$n$は自然数である.

(1)$p,\ q$の値を求めよ.
(2)$\displaystyle J^n=\frac{1}{2^n} \left( \begin{array}{cc}
1 & 2n \\
0 & 1
\end{array} \right)$を示せ.
(3)$\displaystyle A^n=\frac{1}{2^n} \left( \begin{array}{cc}
1+2n & -2n \\
2n & 1-2n
\end{array} \right)$を示せ.
(4)行列$A^n$の表す$1$次変換により,$xy$平面上の点$(p,\ 1)$,$(-2,\ q)$が,それぞれ点$\mathrm{P}_n$,$\mathrm{Q}_n$に移される.原点を$\mathrm{O}$として,$\overrightarrow{\mathrm{OP}}_n$と$\overrightarrow{\mathrm{OQ}}_n$のなす角を$\theta_n$とするとき,$\displaystyle \lim_{n \to \infty}\cos \theta_n$を求めよ.
山形大学 国立 山形大学 2013年 第2問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第1問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第3問
$R,\ r$を正の実数とし,$2r<R \leqq 3r$とする.右図のように,原点 \\
$\mathrm{O}$を中心とする半径$R$の固定された円$S$の内部に点$\mathrm{O}^\prime$を中心と \\
する半径$r$の円$T$があり,円$T$は円$S$に接しながらすべらずに \\
転がるものとする.ただし,点$\mathrm{O}^\prime$は点$\mathrm{O}$のまわりを反時計まわり \\
に動くものとする.はじめに点$\mathrm{O}^\prime$は$(R-r,\ 0)$の位置にあり, \\
円$T$上の点$\mathrm{P}$は$(R,\ 0)$の位置にあるとする.$x$軸の正の部分と \\
動径$\mathrm{OO}^\prime$のなす角が$\theta$ラジアンのとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問に答えよ.
\img{72_2151_2013_1}{60}


(1)$x(\theta),\ y(\theta)$を$\theta$を用いて表せ.
(2)$\displaystyle 0<\theta<\frac{2r}{R} \cdot \frac{3}{2}\pi$において,$x(\theta)$が最小となるときの$\theta$の値を求めよ.
(3)$R=3,\ r=1$とする.$\theta>0$で点$\mathrm{P}$がはじめて$x$軸に到達したときの角$\theta_0$を求めよ.また,$0 \leqq \theta \leqq \theta_0$のとき,$y(\theta) \geqq 0$を示せ.
(4)$R=3,\ r=1$とする.$0 \leqq \theta \leqq \theta_0$における点$\mathrm{P}$の軌跡と$x$軸で囲まれた図形の面積を求めよ.
群馬大学 国立 群馬大学 2013年 第16問
座標平面上に原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2 \sqrt{2},\ 0)$がある.$0<t<1$のとき,線分$\mathrm{AO}$,$\mathrm{OB}$を$t:1-t$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$t:1-t$に内分する点を$\mathrm{R}$とする.また,$t=0$,$t=1$のとき,$\mathrm{R}$はそれぞれ$\mathrm{A}$,$\mathrm{B}$に一致するものとし,$t$を$0 \leqq t \leqq 1$の範囲で動かしたときの$\mathrm{R}$の軌跡を$C$とする.

(1)$C$を媒介変数$t$を用いて表せ.
(2)点$\mathrm{R}$と原点$\mathrm{O}$の距離の最小値を求めよ.
(3)$C$と線分$\mathrm{AB}$で囲まれた部分の面積$S$を求めよ.
福井大学 国立 福井大学 2013年 第1問
関数$f(x)$を$f(x)=x \sin x$とおく.また,曲線$y=f(x)$上の点$(\alpha,\ f(\alpha))$における接線の方程式を$y=g(x)$とおく.$\alpha>0$のとき,以下の問いに答えよ.

(1)$g(x)$を$\alpha$を用いて表せ.
(2)直線$y=g(x)$が原点を通るような最小の$\alpha$を$\alpha_1$とし,$\alpha=\alpha_1$のときの$g(x)$を$h(x)$とおく.$\alpha_1$の値と$h(x)$を求めよ.
(3)$0 \leqq x \leqq \alpha_1$において$h(x) \geqq f(x)$であることを示せ.
(4)$0 \leqq x \leqq \alpha_1$において直線$y=h(x)$と曲線$y=f(x)$で囲まれてできる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第3問
さいころの目によって$x$軸上を移動する点$\mathrm{Q}$を考える.さいころを$1$回投げて$5$または$6$の目が出れば$\mathrm{Q}$は$x$軸上を正の向きに$1$だけ移動し,その他の目が出れば$\mathrm{Q}$は$x$軸上を負の向きに$1$だけ移動する.最初,$\mathrm{Q}$は$x$軸上の原点にあり,さいころを$n$回投げて$\mathrm{Q}$が$n$回移動したときの$\mathrm{Q}$の$x$座標を$X_n$とおく.整数$k$に対し,$X_n=k$となる確率を$p(n,\ k)$と表すとき,以下の問いに答えよ.

(1)$p(3,\ 3)$,$p(3,\ 2)$,$p(3,\ 1)$,$p(3,\ 0)$の値を求めよ.
(2)$X_3$の期待値$E$を求めよ.
(3)$p(n,\ 0)$を$n$を用いて表せ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。