タグ「原点」の検索結果

42ページ目:全992問中411問~420問を表示)
京都大学 国立 京都大学 2013年 第5問
投げたとき表が出る確率と裏が出る確率が等しい硬貨を用意する.数直線上に石を置き,この硬貨を投げて表が出れば数直線上で原点に関して対称な点に石を移動し,裏が出れば数直線上で座標$1$の点に関して対称な点に石を移動する.

(1)石が座標$x$の点にあるとする.$2$回硬貨を投げたとき,石が座標$x$の点にある確率を求めよ.
(2)石が原点にあるとする.$n$を自然数とし,$2n$回硬貨を投げたとき,石が座標$2n$の点にある確率を求めよ.
一橋大学 国立 一橋大学 2013年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,放物線$C:y=1-x^2$がある.$C$上に$2$点$\mathrm{P}(p,\ 1-p^2)$,$\mathrm{Q}(q,\ 1-q^2)$を$p<q$となるようにとる.

(1)$2$つの線分$\mathrm{OP}$,$\mathrm{OQ}$と放物線$C$で囲まれた部分の面積$S$を,$p$と$q$の式で表せ.
(2)$q=p+1$であるとき$S$の最小値を求めよ.
(3)$pq=-1$であるとき$S$の最小値を求めよ.
東北大学 国立 東北大学 2013年 第5問
2次の正方行列$A$を$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\displaystyle\frac{1}{\sqrt{2}} & -\displaystyle\frac{1}{\sqrt{2}} \\
\end{array} \right)$で定める.$n=1,\ 2,\ 3,\ \cdots$に対して,点$\mathrm{P}_n(x_n,\ y_n)$を関係式
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right)+\left( \begin{array}{c}
1 \\
0
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$x_0=1,\ y_0=0$とする.

(1)$A^4$を求めよ.
(2)$n=0,\ 1,\ 2,\ \cdots$に対して,
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=(E-A^{n+1})(E-A)^{-1} \left( \begin{array}{c}
1 \\
0
\end{array} \right) \]
が成り立つことを示せ.ただし,$E$は2次の単位行列とする.
(3)原点$\mathrm{O}$から$\mathrm{P}_n$までの距離$\mathrm{OP}_n$が最大となる$n$を求めよ.
一橋大学 国立 一橋大学 2013年 第4問
$t$を正の定数とする.原点を$\mathrm{O}$とする空間内に,$2$点$\mathrm{A}(2t,\ 2t,\ 0)$,$\mathrm{B}(0,\ 0,\ t)$がある.また動点$\mathrm{P}$は
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=3 \]
を満たすように動く.$\mathrm{OP}$の最大値が$3$となるような$t$の値を求めよ.
北海道大学 国立 北海道大学 2013年 第2問
座標平面上で,直線$y=x$に関する対称移動を$f$とし,実数$c$に対して,直線$y=cx$に関する対称移動を$g$とする.また,原点を中心とする$120^\circ$の回転移動を$h$とする.

(1)$f$を表す行列,および$h$を表す行列を求めよ.
(2)$g$を表す行列を求めよ.
(3)合成変換$f \circ g$が$h$になるように$c$の値を定めよ.
北海道大学 国立 北海道大学 2013年 第4問
次の規則に従って座標平面を動く点$\mathrm{P}$がある.2個のサイコロを同時に投げて出た目の積を$X$とする.

(i) $X$が$4$の倍数ならば,点$\mathrm{P}$は$x$軸方向に$-1$動く.
(ii) $X$を$4$で割った余りが$1$ならば,点$\mathrm{P}$は$y$軸方向に$-1$動く.
(iii) $X$を$4$で割った余りが$2$ならば,点$\mathrm{P}$は$x$軸方向に$+1$動く.
\mon[$\tokeishi$] $X$を$4$で割った余りが$3$ならば,点$\mathrm{P}$は$y$軸方向に$+1$動く.

たとえば,$2$と$5$が出た場合には$2 \times 5=10$を$4$で割った余りが$2$であるから,点$\mathrm{P}$は$x$軸方向に$+1$動く. \\
\quad 以下のいずれの問題でも,点$\mathrm{P}$は原点$(0,\ 0)$を出発点とする.

(1)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(-1,\ 0)$にある確率を求めよ.
(2)$2$個のサイコロを$3$回投げて,点$\mathrm{P}$が$(2,\ 1)$にある確率を求めよ.
(3)$2$個のサイコロを$4$回投げて,点$\mathrm{P}$が$(1,\ 1)$にある確率を求めよ.
岡山大学 国立 岡山大学 2013年 第4問
$xy$平面において,点$(1,\ 2)$を通る傾き$t$の直線を$\ell$とする.また,$\ell$に垂直で原点を通る直線と$\ell$との交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{P}$の軌跡が$2$次曲線$2x^2-ay=0$と$3$点のみを共有するような$a$の値を求めよ.また,そのとき$3$つの共有点の座標を求めよ.ただし$a \neq 0$とする.
広島大学 国立 広島大学 2013年 第2問
座標平面上に点$\mathrm{A}(\cos \theta,\ \sin \theta) \ (0<\theta<\pi)$がある.原点を$\mathrm{O}$とし,$x$軸に関して点$\mathrm{A}$と対称な点を$\mathrm{B}$とする.次の問いに答えよ.

(1)$\displaystyle -1< \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}} \leqq \frac{1}{2}$となる$\theta$の範囲を求めよ.
(2)点$\mathrm{P}$を
\[ \overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{OB}} \]
で定める.点$\mathrm{P}$から$x$軸に下ろした垂線を$\mathrm{PQ}$とする.$\theta$が(1)で求めた範囲を動くとき,$\triangle \mathrm{POQ}$の面積の最大値を求めよ.
北海道大学 国立 北海道大学 2013年 第2問
次の規則に従って座標平面を動く点$\mathrm{P}$がある.$2$個のサイコロを同時に投げて出た目の積を$X$とする.

(i) $X$が$4$の倍数ならば,点$\mathrm{P}$は$x$軸方向に$-1$動く.
(ii) $X$を$4$で割った余りが$1$ならば,点$\mathrm{P}$は$y$軸方向に$-1$動く.
(iii) $X$を$4$で割った余りが$2$ならば,点$\mathrm{P}$は$x$軸方向に$+1$動く.
\mon[$\tokeishi$] $X$を$4$で割った余りが$3$ならば,点$\mathrm{P}$は$y$軸方向に$+1$動く.

たとえば,$2$と$5$が出た場合には$2 \times 5=10$を$4$で割った余りが$2$であるから,点$\mathrm{P}$は$x$軸方向に$+1$動く. \\
\quad 以下のいずれの問題でも,点$\mathrm{P}$は原点$(0,\ 0)$を出発点とする.

(1)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(1,\ 0)$にある確率を求めよ.
(2)$2$個のサイコロを$1$回投げて,点$\mathrm{P}$が$(0,\ 1)$にある確率を求めよ.
(3)$2$個のサイコロを$3$回投げて,点$\mathrm{P}$が$(2,\ 1)$にある確率を求めよ.
岡山大学 国立 岡山大学 2013年 第2問
行列$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right)$で定まる座標平面上の$1$次変換を$f$とする.ただし,$a,\ b$は実数とする.このとき,以下の問いに答えよ.

(1)原点$\mathrm{O}$とは異なる点$\mathrm{P}(x,\ y)$を$f$で移した点を$\mathrm{Q}$とする.このとき,長さの比の値$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}$は$\mathrm{P}$によらないことを示し,その値を$a,\ b$を用いて表せ.
(2)正の整数$n$に対して,$A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right)$とするとき,
\[ p_n^2+r_n^2=(a^2+b^2)^n,\quad q_n^2+s_n^2=(a^2+b^2)^n \]
が成り立つことを示せ.
(3)$109^2=l^2+m^2$を満たす正の整数$l,\ m$を一組求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。