タグ「原点」の検索結果

38ページ目:全992問中371問~380問を表示)
同志社大学 私立 同志社大学 2014年 第3問
曲線$\displaystyle C:y=(\log x)^2+\frac{3}{4} (x>0)$について,以下の問いに答えよ.

(1)$\displaystyle \frac{dy}{dx},\ \frac{d^2y}{dx^2}$を求めよ.また,$\displaystyle \frac{dy}{dx}>0$となる$x$の範囲を求めよ.
(2)曲線$C$の接線で原点$(0,\ 0)$を通るものを求めよ.
(3)曲線$C$の概形と$(2)$で求めた接線を描け.
(4)$(2)$で求めた接線の中で傾きが最大のものと曲線$C$との接点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(5)$(4)$で求めた点$\mathrm{P}$を通り$x$軸に平行な直線と曲線$C$で囲まれた図形の面積$S$を求めよ.
北里大学 私立 北里大学 2014年 第3問
$a$は$0<a<e$を満たす定数とする.曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$,法線を$m$とおく.以下の問に答えよ.必要ならば$\displaystyle e=\lim_{k \to 0}(1+k)^{\frac{1}{k}}$で,$2.718<e<2.719$であることを用いてよい.

(1)接線$\ell$の方程式を$a$を用いて表せ.
(2)接線$\ell$が$x$軸と交わる点を$\mathrm{P}$,$y$軸と交わる点を$\mathrm{Q}$とし,原点を$\mathrm{O}$とする.三角形$\mathrm{OPQ}$の面積を$S(a)$とおくとき,$S(a)$を$a$を用いて表せ.
(3)$a$が$0<a<e$の範囲を動くとき,$(2)$の$S(a)$を最大にする$a$の値と$S(a)$の最大値を求めよ.
(4)$a$が$0<a<e$の範囲を動くとき,法線$m$が点$(e,\ 0)$を通るような$a$の値の個数はただ$1$個であることを示せ.
久留米大学 私立 久留米大学 2014年 第2問
$xy$平面上において,原点を通り傾きが正の直線を$\ell$とする.直線$\ell$上の$y$座標が$1$の点に,$x$軸の正の方向から$x$軸に平行な光線を入射したとき,光線は直線$\ell$と$x$軸で次々と反射を繰り返し,$n$回目に反射した後,入射した経路を逆に進んだとする.このときの直線$\ell$と$x$軸とのなす角を$\theta$とする.直線$\ell$での最初の反射を$1$回目,反射した点を$\mathrm{P}_1$とし,その後光線が反射した点を$\mathrm{P}_2,\ \mathrm{P}_3,\ \cdots,\ \mathrm{P}_n$とする.また,$0^\circ<\theta<{90}^\circ$とする.

(1)$\theta={30}^\circ$のときの$\mathrm{P}_n$の座標は$[$4$]$である.
(2)$\theta$のうち,その値が整数となるものは全部で$[$5$]$個ある.
(3)$\mathrm{P}_1$から$\mathrm{P}_n$までの光の経路の長さは$[$6$]$である.
同志社大学 私立 同志社大学 2014年 第1問
次の$[ ]$に適する数または式を記入せよ.

$a$を実数とする.極値を持つ$3$次関数$f(x)=x^3-ax$について考える.$3$次関数$y=f(x)$が極値を持つための$a$の満たすべき条件は$[ア]$であり,そのとき,極小値は$[イ]$である.このとき,座標平面で曲線$C:y=f(x)$上の原点以外の点$\mathrm{P}(p,\ f(p))$における曲線$C$の接線$L$の方程式は$[ウ]$と表せる.また,曲線$C$と接線$L$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の$x$座標$q$は,$q=[エ]$となる.また,点$\mathrm{P}$と異なる曲線$C$上の点$\mathrm{R}(r,\ f(r))$における接線が接線$L$と平行であるとき,$r=[オ]$である.$\triangle \mathrm{PQR}$の面積$M$を求めると$M=[カ]$である.さらに,曲線$C$を$x$軸正の方向に$t (t>0)$だけ平行移動した曲線を$D$とするとき,この$2$曲線$C$と$D$とが異なる$2$つの共有点を持つための$t$の満たすべき条件は$[キ]$である.そのときの$2$つの共有点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とすると,$\alpha=[ク]$であり,$\beta=[ケ]$となる.このとき,$2$曲線$C$と$D$とで囲まれる図形の面積$S$を求めると$S=[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
$r>0$とする.座標平面上の原点以外の点に対し,$2$種類の移動$\mathrm{A}$,$\mathrm{B}$を以下のように定める.

移動$\mathrm{A} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$\displaystyle \left( r \cos \left( \theta+\frac{\pi}{6} \right),\ r \sin \left( \theta+\frac{\pi}{6} \right) \right)$に動く.

移動$\mathrm{B} \ \cdots \ (r \cos \theta,\ r \sin \theta)$にある点が$((r+1) \cos \theta,\ (r+1) \sin \theta)$に動く.

(図は省略)
動点$\mathrm{K}$は点$(1,\ 0)$を出発し,上記$\mathrm{A}$,$\mathrm{B}$いずれかの移動をくり返しながら座標平面上を動くとする.

(1)動点$\mathrm{K}$が$\mathrm{B}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{B}$の順に$4$回の移動を行ったとき,到達する点の座標は$([$49$] \sqrt{[$50$]},\ [$51$])$である.
(2)動点$\mathrm{K}$が$7$回の移動で点$(0,\ 5)$に到達する経路は$[$52$][$53$]$通りあり,そのうち点$\displaystyle \left( \frac{3}{2},\ \frac{3 \sqrt{3}}{2} \right)$を{\bf 通らない}ものは$[$54$][$55$]$通りある.

以下,$p$を$0 \leqq p \leqq 1$を満たす定数とする.動点$\mathrm{K}$は各回の移動において,確率$p$で移動$\mathrm{A}$を,確率$1-p$で移動$\mathrm{B}$を行うものとする.

(3)動点$\mathrm{K}$が$5$回の移動で到達する点の座標が$(0,\ 3)$である確率$P$を,$p$を用いた式で表しなさい.
(4)動点$\mathrm{K}$が$3$回の移動で到達する点の$y$座標を$a$とするとき,$a^2$の期待値$E$を$p$を用いた式で表しなさい.
同志社大学 私立 同志社大学 2014年 第4問
$\mathrm{O}$を原点とする座標平面において,曲線$C_1:y=\log x+\log t$と曲線$C_2:y=ax^2$を考える.ただし$a$と$t$は正の実数である.曲線$C_1$と$C_2$は共有点$\mathrm{P}$を持ち,また,$\mathrm{P}$における$C_1$と$C_2$の接線が一致するものとする.次の問いに答えよ.

(1)$\mathrm{P}$の$x$座標を$x_0$とする.$x_0,\ a,\ t$の間に成立する関係式を書け.
(2)$x_0$と$a$をそれぞれ$t$を用いて表せ.
(3)$\mathrm{P}$における$C_2$の法線を$\ell$とする.また,$\ell$と$x$軸の交点を$\mathrm{Q}$,$\ell$と$y$軸の交点を$\mathrm{R}$とする.$\triangle \mathrm{OQR}$の面積$S(t)$を求め,また,$S(t)$を最小とする$t$の値を求めよ.
(4)$t$が$(3)$で求めた値のとき,曲線$C_1$,$C_2$と$x$軸が囲む図形の面積を求めよ.
杏林大学 私立 杏林大学 2014年 第3問
$[ケ]$,$[ヌ]$,$[ネ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がそれぞれ$x$軸,$y$軸,$z$軸上にあり,原点$\mathrm{O}$を頂点に持つ$3$つの三角形$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OCA}$の面積の比が$1:\sqrt{3}:\sqrt{5}$となっている.三角形$\mathrm{ABC}$を含む平面を$\alpha$とする.

(1)平面$\alpha$上にある点$\mathrm{P}$の位置ベクトルを$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$と表わすと,$s+t+u=[ア]$が成り立つ.
(2)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心を$\mathrm{D}$とすると
\[ \overrightarrow{\mathrm{OD}}=\frac{[イ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}+\frac{[カ]}{[キ]} \overrightarrow{\mathrm{OC}} \]
と表わされる.
直線$\mathrm{OD}$と平面$\alpha$の交点$\mathrm{G}$は,線分$\mathrm{OD}$を$[ク]:1$に内分する.点$\mathrm{G}$は三角形$\mathrm{ABC}$の$[ケ]$である.
(3)原点$\mathrm{O}$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{OH}}=\frac{[コ]}{[サ]} \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[ス]} \overrightarrow{\mathrm{OB}}+\frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OC}}, \]
点$\mathrm{D}$から平面$\alpha$に下ろした垂線の足を$\mathrm{E}$とすると
\[ \overrightarrow{\mathrm{OE}}=\frac{[タ]}{[チ]} \overrightarrow{\mathrm{OA}}+\frac{[ツ]}{[テ]} \overrightarrow{\mathrm{OB}}+\frac{[ト]}{[ナ]} \overrightarrow{\mathrm{OC}} \]
が成り立つ.
点$\mathrm{G}$は線分$\mathrm{EH}$を$1:[ニ]$に内分する.
点$\mathrm{H}$は三角形$\mathrm{ABC}$の$[ヌ]$であり,点$\mathrm{E}$は三角形$\mathrm{ABC}$の$[ネ]$である.

$[ケ]$,$[ヌ]$,$[ネ]$の解答群
\mon[$①$] 重心
\mon[$②$] 内心
\mon[$③$] 外心
\mon[$④$] 垂心
\mon[$⑤$] 三辺の中点を通る円の中心
\mon[$⑥$] 頂点$\mathrm{A}$,$\mathrm{B}$における外角の二等分線の交点
\mon[$④chi$] 頂点$\mathrm{B}$,$\mathrm{C}$における外角の二等分線の交点
\mon[$\maruhachi$] 頂点$\mathrm{A}$,$\mathrm{C}$における外角の二等分線の交点
北海学園大学 私立 北海学園大学 2014年 第1問
$x$の$2$次関数$y=x^2-(2a^2-4a)x+a^4-4a^3+3a^2+1$のグラフについて,次の問いに答えよ.ただし,$a$は$0<a<2$を満たす実数とする.

(1)頂点の座標を求めよ.
(2)頂点が直線$y=-x$上にあるような$a$の値を求めよ.
(3)原点と頂点を通る直線の傾きの絶対値が$1$以上となるような$a$の値の範囲を求めよ.
東北学院大学 私立 東北学院大学 2014年 第3問
$a$を負の定数とし,放物線$y=a(x+1)(x-3)$を$C$とする.$C$上の点$\mathrm{P}(2,\ -3a)$における$C$の接線$\ell$と$x$軸との交点を$\mathrm{A}$とするとき,次の問いに答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)直線$\ell$の方程式と点$\mathrm{A}$の座標を求めよ.
(2)三角形$\mathrm{OAP}$の面積が$\displaystyle \frac{7}{4}$であるとき,$a$の値を求めよ.
(3)$(2)$の$a$に対し,線分$\mathrm{OP}$,$y$軸および放物線$C$で囲まれた図形の面積$S$を求めよ.
桜美林大学 私立 桜美林大学 2014年 第1問
次の問いに答えよ.

(1)$2$次関数$y=ax^2+bx+4$のグラフを原点に関して対称に移動し,さらに$y$軸の正方向に$c$だけ平行移動すると,$x$軸とで$(-1,\ 0)$で接し,点$\displaystyle \left( \frac{1}{2},\ 9 \right)$を通る放物線となった.このとき,$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)$6$個の文字$\mathrm{O}$,$\mathrm{O}$,$\mathrm{B}$,$\mathrm{B}$,$\mathrm{R}$,$\mathrm{N}$について,$6$個すべてを使ってできる順列の総数は$[エ][オ][カ]$個であり,$6$個のうち$4$個をとってできる順列の総数は,$[キ][ク][ケ]$個である.
(3)$\mathrm{O}$を原点とする$xy$座標平面上で,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$とする.三角形$\mathrm{OAB}$の外接円$C_1$の半径は$\displaystyle \frac{[コ]}{[サ]}$であり,三角形$\mathrm{OAB}$の内接円$C_2$の半径は$[シ]$である.
(4)$x$は実数とし,$t=2^x+2^{-x}$とおくと,$t$の最小値は$[ス]$である.また,$t^2-6t+8=0$を満たす異なる実数$x$の個数は$[セ]$個である.
(5)$x$の$2$次方程式$3x^2+(1+3i)x-2-2i=0$は実数解と虚数解をもつという.このとき,実数解は$\displaystyle \frac{[ソ]}{[タ]}$であり,虚数解は$[チ]+[ツ]i$である.ただし,$i$は虚数単位である.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。