タグ「原点」の検索結果

33ページ目:全992問中321問~330問を表示)
東京海洋大学 国立 東京海洋大学 2014年 第3問
座標空間内の定点$\mathrm{A}(0,\ 0,\ 1)$と$2$つの点$\mathrm{P}(p,\ p,\ 0)$,$\mathrm{Q}(q,\ -q,\ 0)$が$\displaystyle \angle \mathrm{PAQ}=\frac{\pi}{3}$をみたしている.ただし,$p>0$,$q>0$とする.また,以下において$\mathrm{O}$を座標空間の原点とする.このとき次の問に答えよ.

(1)三角形$\mathrm{APQ}$の面積は$p$と$q$の値によらず一定であることを示し,その面積を求めよ.
(2)四面体$\mathrm{OAPQ}$の体積が最大のとき,点$\mathrm{P}$,$\mathrm{Q}$の座標とこの四面体に内接する球の半径を求めよ.
福井大学 国立 福井大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と放物線$\displaystyle C:y=\frac{1}{2}x^2-3x+6$があり,$C$上の点で$x$座標が$t$と$2t$であるものをそれぞれ$\mathrm{P}$,$\mathrm{Q}$とおく.このとき,以下の問いに答えよ.ただし$t>0$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が一直線上にあるときの$t$の値を$t_0$とおく.$t_0$の値を求めよ.
(2)$t=t_0$のとき,$\triangle \mathrm{OAQ}$の周および内部と,不等式$\displaystyle y \geqq \frac{1}{2}x^2-3x+6$の表す領域との共通部分の面積を求めよ.
(3)$0<t<t_0$を満たす$t$に対して,$\triangle \mathrm{APQ}$の面積を$S(t)$とおくとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
(4)試行を$n$回行うとき,点$\mathrm{P}$の座標が$1$度も$-2$にならず,ちょうど$n$回目に初めて$2$になる確率を求めよ.
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第1問
座標平面上に動点$\mathrm{P}$が初め原点$(0,\ 0)$にある.$1$つのさいころをくり返し投げて,その出た目に応じて,以下のように$\mathrm{P}$を動かしていく.

(i) さいころの出た目が$1,\ 3,\ 5$であれば,$\mathrm{P}$は$x$軸に平行に正の向きに$1$動く.
(ii) 出た目が$2,\ 4$であれば,$\mathrm{P}$は$y$軸に平行に正の向きに$1$動く.
(iii) 出た目が$6$であれば,$\mathrm{P}$は直線$y=x$に関して対称な点に動く.

以下の問いに答えよ.

(1)さいころを$2$回投げたときに$\mathrm{P}$が点$(1,\ 0)$に動く確率を求めよ.
(2)さいころを$5$回投げたときに$\mathrm{P}$が点$(2,\ 3)$に動く確率を求めよ.
(3)さいころを$5$回投げたときに$\mathrm{P}$が直線$x=4$上の点に動く確率を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第1問
座標平面上に動点$\mathrm{P}$が初め原点$(0,\ 0)$にある.$1$つのさいころをくり返し投げて,その出た目に応じて,以下のように$\mathrm{P}$を動かしていく.

(i) さいころの出た目が$1,\ 3,\ 5$であれば,$\mathrm{P}$は$x$軸に平行に正の向きに$1$動く.
(ii) 出た目が$2,\ 4$であれば,$\mathrm{P}$は$y$軸に平行に正の向きに$1$動く.
(iii) 出た目が$6$であれば,$\mathrm{P}$は直線$y=x$に関して対称な点に動く.

以下の問いに答えよ.

(1)さいころを$2$回投げたときに$\mathrm{P}$が点$(1,\ 0)$に動く確率を求めよ.
(2)さいころを$5$回投げたときに$\mathrm{P}$が点$(2,\ 3)$に動く確率を求めよ.
(3)さいころを$5$回投げたときに$\mathrm{P}$が直線$x=4$上の点に動く確率を求めよ.
鳥取大学 国立 鳥取大学 2014年 第4問
$a,\ b$を正の実数とする.$xy$平面内の楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の点$\mathrm{P}$における$C$の接線を$\ell$とする.$\mathrm{P}$を媒介変数表示により$\mathrm{P}(a \cos t,\ b \sin t) (0 \leqq t<2\pi)$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$に直交し,楕円$C$上の点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$ $(0<\theta<\pi)$で$C$に接する直線を$m$とする.接点$\mathrm{Q}$の座標を$a,\ b,\ t$を用いて表し,直線$m$の方程式を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$と$(2)$で求めた直線$m$との交点を$\mathrm{R}$とする.線分$\mathrm{OR}$の長さを求めよ.ただし$\mathrm{O}$は原点とする.
東京農工大学 国立 東京農工大学 2014年 第1問
$r,\ s$は実数で,$r>0$とする.$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(r,\ r,\ r)$がある.さらに,点$\mathrm{E}$を,ベクトル$\overrightarrow{\mathrm{OE}}$が
\[ \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{OA}}+s(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}) \]
で定まる点とする.次の問いに答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OF}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(2)$\overrightarrow{\mathrm{DE}} \cdot \overrightarrow{\mathrm{AB}}=0$が成り立つとき,$s$を$r$の式で表せ.
(3)$(2)$の条件$\overrightarrow{\mathrm{DE}} \cdot \overrightarrow{\mathrm{AB}}=0$を満たし,さらに$|\overrightarrow{\mathrm{DE}}|=r$,$\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{OD}}<0$を満たすような$r$の値を求めよ.
東京農工大学 国立 東京農工大学 2014年 第2問
$a,\ b$を実数とする.行列$A=\left( \begin{array}{cc}
4 & 3 \\
a & b
\end{array} \right)$,$B=\left( \begin{array}{cc}
a & b \\
b & -a
\end{array} \right)$が
\[ AB=\left( \begin{array}{cc}
10 & 5 \\
5 & 0
\end{array} \right) \]
を満たしている.次の問いに答えよ.

(1)$a,\ b$の値を求めよ.ただし答えのみでよい.
(2)$m,\ n$は実数で,$m \neq 0$,$n \neq 0$とする.座標平面上の$2$点$\mathrm{S}_1(m,\ 0)$,$\mathrm{S}_2(0,\ n)$をとり,行列$A$が表す$1$次変換によって$S_1$,$S_2$が移る点をそれぞれ${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$とする.$2$点${\mathrm{S}_1}^\prime$,${\mathrm{S}_2}^\prime$を通る直線が$2$点$\mathrm{S}_1$,$\mathrm{S}_2$を通る直線に一致するとき,$n$を$m$の式で表せ.
(3)$2$点$\mathrm{T}_1(-7,\ 0)$,$\mathrm{T}_2(0,\ 7)$を通る直線を$\ell$とする.行列$B$が表す$1$次変換によって$\mathrm{T}_1$,$\mathrm{T}_2$が移る点をそれぞれ${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$とし,$2$点${\mathrm{T}_1}^\prime$,${\mathrm{T}_2}^\prime$を通る直線を$\ell^\prime$とする.原点を中心とする半径$r$の円を$C$とする.$C$と$\ell$が異なる$2$点で交わり,かつ$C$と$\ell^\prime$も異なる$2$点で交わるとする.このような$r$の値の範囲を求めよ.
(4)$(3)$において,円$C$が$\ell$を切り取る線分の長さを$L$とし,円$C$が$\ell^\prime$を切り取る線分の長さを$L^\prime$とする.このような$L,\ L^\prime$の中で,$L$が最も小さい自然数になるときの$L^\prime$の値を求めよ.
東京農工大学 国立 東京農工大学 2014年 第3問
$e$は自然対数の底とする.$\mathrm{O}$を原点とする座標平面に$3$点
\[ \mathrm{A}(e^{-\theta}+\sqrt{3},\ e^{-\theta}),\quad \mathrm{B}(\cos \theta,\ \sin \theta),\quad \mathrm{C}(\sqrt{3},\ 0) \]
がある.ただし,$\theta \geqq 0$とする.次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の面積を$F(\theta)$とする.$F(\theta)$を求めよ.
(2)$F(\theta)$の導関数を$F^\prime(\theta)$とする.区間$0<\theta<2\pi$において$F^\prime(\theta)=0$となる$\theta$の値をすべて求めよ.
(3)$n$を自然数とする.区間$2(n-1) \pi \leqq \theta \leqq 2n\pi$における$F(\theta)$の最大値,最小値をそれぞれ$\alpha_n$,$\beta_n$とする.$\alpha_n$,$\beta_n$を求めよ.また最大値を与える$\theta$の値と最小値を与える$\theta$の値を求めよ.
(4)$(3)$で求めた$\alpha_n (n=1,\ 2,\ 3,\ \cdots)$に対して,$\displaystyle S=\sum_{n=1}^\infty \alpha_n$とおく.$S$の値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。