タグ「原点」の検索結果

30ページ目:全992問中291問~300問を表示)
名古屋工業大学 国立 名古屋工業大学 2014年 第2問
放物線$y=x^2$上の動点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(q,\ q^2)$が次の条件をみたしている.
\[ 0<p<q,\quad \angle \mathrm{POQ}=\frac{\pi}{4} \]
ただし$\mathrm{O}$は原点である.点$\mathrm{P}$と点$\mathrm{Q}$における接線の交点を$\mathrm{R}$とする.

(1)$p$のとり得る値の範囲を求めよ.
(2)$q$を$p$の式で表せ.
(3)点$\mathrm{R}$の$x$座標,$y$座標それぞれのとり得る値の範囲を求めよ.
(4)点$\mathrm{R}$が描く曲線の方程式を求めよ.
(5)点$\mathrm{R}$が描く曲線の漸近線を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第4問
座標空間に立方体$K$があり,原点$\mathrm{O}$と$3$点$\mathrm{A}(a,\ b,\ 0)$,$\mathrm{B}(r,\ s,\ t)$,$\mathrm{C}(3,\ 0,\ 0)$が次の条件をみたしている.

(i) $\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$は立方体$K$の辺である.
(ii) $\mathrm{OC}$は立方体$K$の辺ではない.
(iii) $b>0,\ t>0$

このとき,以下の問いに答えよ.

(1)立方体$K$の一辺の長さ$l$を求めよ.
(2)点$\mathrm{A}$の座標を求めよ.
(3)点$\mathrm{B}$の座標を求めよ.
(4)辺$\mathrm{AB}$上の点$\mathrm{P}$から$x$軸に下ろした垂線の足を$\mathrm{H}(x,\ 0,\ 0)$とする.$\mathrm{PH}$の長さを$x$を用いて表せ.
(5)立方体$K$を$x$軸を回転軸として$1$回転させて得られる回転体の体積$V$を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第3問
平面上の原点を$\mathrm{O}(0,\ 0)$とし,点$\mathrm{A}(2,\ 0)$をとる.また,$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$上の点$\mathrm{P}$に対して$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{APO}=\phi$,$\mathrm{AP}=z$とおく.ただし,$0<\theta<\pi$とする.下の問いに答えなさい.

(1)正弦定理を用いて$z$を$\theta$と$\phi$で表しなさい.
(2)余弦定理を用いて$z^2$を$\theta$で表しなさい.
(3)$\displaystyle \frac{dz}{d\theta}$を$\phi$で表しなさい.
(4)$\displaystyle \frac{dz}{d\theta}$の最大値,およびその最大値を与える$\theta$の値を求めなさい.
愛知教育大学 国立 愛知教育大学 2014年 第7問
$\displaystyle 0<t<\frac{\pi}{2}$とする.座標平面上に,原点$\mathrm{O}$を中心とする単位円$C$上の点$\mathrm{P}(\cos t,\ \sin t)$と,$x$軸上の点$\mathrm{Q}(\cos t,\ 0)$をとり,点$\mathrm{P}$における$C$の接線を$\ell$とする.また,点$\mathrm{Q}$から$\ell$に下ろした垂線と$\ell$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\mathrm{PR}$と$\mathrm{QR}$を$t$を用いて表せ.
(3)$(2)$で求めた$\mathrm{PR}$を$x(t)$,$\mathrm{QR}$を$y(t)$とする.点$\mathrm{S}(x(t),\ y(t))$の軌跡を求めよ.
山梨大学 国立 山梨大学 2014年 第3問
座標平面上の原点を$\mathrm{O}$,曲線$y=x^3$上の点$\mathrm{P}(t,\ t^3) (t>0)$における接線と$x$軸との交点を$\mathrm{Q}$とし,また$\alpha=\angle \mathrm{POQ}$,$\beta=\angle \mathrm{OPQ}$とする.

(1)点$\mathrm{Q}$の座標を$t$を用いた式で表せ.
(2)$\tan \alpha$および$\tan \beta$を$t$を用いた式で表せ.
(3)$\tan \beta$が最大となるような$t$とそのときの$\beta$の値を求めよ.
旭川医科大学 国立 旭川医科大学 2014年 第2問
$\displaystyle 0<a \leqq \frac{\pi}{2}$とし,曲線$y=1-\cos x (0 \leqq x \leqq a)$を$C$とする.$0<t<a$とし,原点と$C$上の点$(t,\ 1-\cos t)$を通る直線を$\ell$とおくとき,次の問いに答えよ.

(1)曲線$C$と直線$\ell$とで囲まれた部分の面積を$S_1(t)$,$t \leqq x \leqq a$の範囲で$C$と$\ell$と直線$x=a$とで囲まれた部分の面積を$S_2(t)$とおくとき,$S_1(t)+S_2(t)$を求めよ.
(2)$S_1(t)+S_2(t)$を最小とする$t$の値を$t_0$とするとき,$t_0$を$a$を用いて表せ.

(3)$\displaystyle \lim_{a \to +0} \frac{S_1(t_0)-S_2(t_0)}{a^3}$を求めよ.ただし,$\displaystyle a-\frac{a^3}{3!}<\sin a<a-\frac{a^3}{3!}+\frac{a^5}{5!} (a>0)$は用いてよい.
鹿児島大学 国立 鹿児島大学 2014年 第5問
次の各問いに答えよ.

(1)座標平面上での原点を中心とする${150}^\circ$の回転移動を表す行列を$P$とする.点$(x,\ y)$が$P$の表す移動によって,点$(2,\ 4)$に移ったとする.このとき,点$(x,\ y)$を求めよ.
(2)$(1)$で与えられた行列$P$を考える.$P^n=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たす最小の自然数$n$を求めよ.
(3)以下の各命題の反例をあげよ.また,反例になっていることを示せ.ただし,$X,\ Y$は$2$次の正方行列とする.

(i) $XY=YX$が成立する.
(ii) $XY=O$ならば,$X=O$または$Y=O$である.ただし,$O$は$2$次の零行列を表す.
(iii) $A$を逆行列$A^{-1}$をもつ$2$次の正方行列とする.このとき,$AX=Y$ならば,$X=YA^{-1}$である.
豊橋技術科学大学 国立 豊橋技術科学大学 2014年 第2問
$xy$平面上に$2$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 3)$を直径の両端とする円がある.図のようにこの円と$x$軸との原点以外の交点を$\mathrm{B}$,線分$\mathrm{OA}$に関して$\mathrm{B}$と反対側の円周上に$\angle \mathrm{COA}={45}^\circ$を満たす点$\mathrm{C}$をとり,線分$\mathrm{CA}$の延長線と$x$軸との交点を$\mathrm{D}$とする.以下の問いに答えよ.
(図は省略)

(1)$\triangle \mathrm{AOD}$の外心を$\mathrm{P}$として,$\angle \mathrm{OPD}$の大きさを求めよ.
(2)点$\mathrm{D}$の座標を求めよ.
(3)$\triangle \mathrm{AOD}$の外接円の方程式を求めよ.
(4)$\angle \mathrm{AOB}$の二等分線と線分$\mathrm{AD}$との交点を$\mathrm{E}$とし,$\overrightarrow{\mathrm{OE}}$を成分表示せよ.
大阪教育大学 国立 大阪教育大学 2014年 第2問
座標平面上の原点を$\mathrm{O}$とし,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 1)$,$\mathrm{C}(1,\ 0)$を考える.$x$軸上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の垂直二等分線を$\ell$とする.点$\mathrm{P}$を通り$x$軸に垂直な直線と$\ell$との交点を$\mathrm{Q}$とする.

(1)$\mathrm{AQ}=\mathrm{QP}$であることを証明せよ.
(2)点$\mathrm{P}$が$x$軸上を動くとき,点$\mathrm{Q}$の軌跡はどのような曲線を描くか図示せよ.
(3)点$\mathrm{P}$は$x$軸の閉区間$[0,\ 1]$にあるとする.このとき,直線$\ell$が正方形$\mathrm{ABCO}$を二つの部分に切る.そのうちの点$\mathrm{C}$を含む部分の面積を$S$とする.$S$の最大値と最小値を求めよ.また,そのときの点$\mathrm{P}$の座標を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第3問
曲線$\displaystyle y=\frac{x^2}{x^2+3}$を$C$とし,座標平面上の原点を$\mathrm{O}$とする.以下の問に答えよ.

(1)曲線$C$の凹凸,変曲点,漸近線を調べ,その概形をかけ.
(2)曲線$C$の接線で原点を通るものをすべて求めよ.また,その接点を求めよ.
(3)$\mathrm{P}$を原点を中心とする半径$\displaystyle \frac{\sqrt{17}}{4}$の円周上の点とする.点$\mathrm{P}$を点$\displaystyle \mathrm{A} \left( 0,\ \frac{\sqrt{17}}{4} \right)$から時計回りに動かすとき,原点以外に線分$\mathrm{OP}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
(4)$\mathrm{Q}$を原点を中心とする半径$2$の円周上の点とする.点$\mathrm{Q}$を点$\mathrm{B}(0,\ 2)$から時計回りに動かすとき,原点以外に線分$\mathrm{OQ}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。