タグ「原点」の検索結果

23ページ目:全992問中221問~230問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2015年 第3問
$xy$平面上の点$\mathrm{P}$が原点$\mathrm{O}(0,\ 0)$から次の規則に従って動くとする.表,裏がでる確率が等しい硬貨を$2$枚投げて,表が$2$枚でたら右に$1$移動し,裏が$2$枚でたら上に$1$移動し,表$1$枚裏$1$枚でたら右に$1$移動し,さらに上に$1$移動する.以下,この試行を繰り返す.従って,最初表$1$枚裏$1$枚でたら点$\mathrm{P}$の座標は$(1,\ 1)$で,次に表$2$枚でたら点$\mathrm{P}$の座標は$(2,\ 1)$である.このとき,次の問に答えなさい.

(1)この試行を$3$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)この試行を$4$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(3)この試行を$5$回繰り返したとき,点$\mathrm{P}$の座標が$(3,\ 3)$である確率は$\displaystyle \frac{[カキ]}{[クケコ]}$である.また,そのうち点$\mathrm{P}$が点$(1,\ 1)$を通って座標が$(3,\ 3)$である確率は$\displaystyle \frac{[サ]}{[シスセ]}$である.
(4)この試行を$7$回繰り返したとき,点$\mathrm{P}$が$(3,\ 3)$を通るか,$(3,\ 3)$である確率は$\displaystyle \frac{[ソタチ]}{\fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[15mm][c]{\small{ツテトナ}}}}$である.
獨協医科大学 私立 獨協医科大学 2015年 第3問
$a,\ b$を実数の定数とする.$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(1,\ 2,\ 0)$,$\mathrm{B}(2,\ 0,\ 4)$,$\mathrm{C}(a,\ b,\ 1)$がある.

三角形$\mathrm{OAB}$において,点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$の交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標は
\[ \left( \frac{[ア]}{[イ]},\ \frac{[ウエ]}{[オ]},\ \frac{[カ]}{[キ]} \right) \]
である.
点$\mathrm{A}$から直線$\mathrm{OB}$に下ろした垂線と線分$\mathrm{OH}$の交点を$\mathrm{K}$とする.点$\mathrm{K}$の座標は
\[ \left( \frac{[ク]}{[ケ]},\ \frac{[コ]}{[サ]},\ \frac{[シ]}{[ス]} \right) \]
である.
$\overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{BC}}$に垂直で,$\overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{AC}}$に垂直であるとする.このとき$a=[セソ]$,$\displaystyle b=\frac{[タ]}{[チ]}$である.以下で,$a,\ b$はこの値であるとする.
線分$\mathrm{CK}$上に$\overrightarrow{\mathrm{OL}}$が$\overrightarrow{\mathrm{AC}}$に垂直になるように点$\mathrm{L}$をとるとき
\[ \overrightarrow{\mathrm{OL}}=\left( [ツ],\ [テ],\ \frac{[ト]}{[ナ]} \right) \]
である.そのとき,$\overrightarrow{\mathrm{LK}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$に垂直である.
平面$\mathrm{OAB}$において,三角形$\mathrm{KAB}$の外接円の周上に点$\mathrm{P}$をとるとき,線分$\mathrm{LP}$の長さの最大値は$\displaystyle \frac{\sqrt{[ニヌ]}}{[ネ]}$である.
同志社大学 私立 同志社大学 2015年 第2問
$\mathrm{O}$を原点とする座標平面内に曲線$C:y=\log (x+1)$,点$\mathrm{P}(t,\ 0)$と点$\mathrm{Q}(t,\ \log (t+1))$を考える.ただし,$t$は正の実数とする.次の問いに答えよ.

(1)$x$軸,直線$x=t$と曲線$C$で囲まれた部分の面積$S(t)$を求めよ.
(2)$\triangle \mathrm{OPQ}$の面積を$T(t)$とする.次の極限値を求めよ.
\[ \lim_{t \to \infty} \frac{T(t)}{S(t)} \]
(3)点$\mathrm{Q}$における曲線$C$の接線と$y$軸の交点を$\mathrm{R}$とする.$\mathrm{R}$の座標を求めよ.
(4)台形$\mathrm{OPQR}$の面積を$U(t)$とする.次の極限値を求めよ.
\[ \lim_{t \to \infty} \frac{U(t)}{S(t)} \]
東北工業大学 私立 東北工業大学 2015年 第3問
以下の問いに答えよ.

(1)$\displaystyle (8^{\frac{1}{4}}-3^{-\frac{1}{4}})(8^{\frac{1}{4}}+3^{-\frac{1}{4}})(8^{\frac{1}{2}}+3^{-\frac{1}{2}})=\frac{[ナ][ニ]}{3}$
(2)$\log_2 72-3 \log_4 9+2 \log_4 6=[ヌ][ネ]$
(3)赤,白,青のカードが$4$枚ずつあり,各色ごとに$1$から$4$までの番号が$1$つずつ書かれている.$12$枚のカードをよくまぜてから同時に$3$枚取り出す.$3$枚の番号がすべて異なる確率は$\displaystyle \frac{[ノ][ハ]}{55}$.
(4)$\mathrm{O}$を原点とし,$2$点$\mathrm{A}$,$\mathrm{B}$の位置ベクトルが$\overrightarrow{\mathrm{OA}}=2 \overrightarrow{a}+3 \overrightarrow{b}$,$\overrightarrow{\mathrm{OB}}=(t-6) \overrightarrow{a}+(t+1) \overrightarrow{b}$であるとする($\overrightarrow{a},\ \overrightarrow{b}$は零ベクトルではなく,たがいに平行ではないものとする.$t$は実数とする.).$t=[ヒ][フ]$のとき$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は一直線上にある.
(5)初項$-100$,公差$7$の等差数列において,第$[ヘ][ホ]$項で初めて$500$以上になる.
埼玉工業大学 私立 埼玉工業大学 2015年 第1問
次の$[ ]$にあてはまるものを入れよ.

(1)$\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{5}}{2}$のとき,
\[ \sin \theta \cos \theta=\frac{[ア]}{[イ]}, \tan \theta+\frac{1}{\tan \theta}=[ウ], \sin^4 \theta+\cos^4 \theta=\frac{[エオ]}{[カキ]} \]
である.
(2)恒等式
\[ \frac{3}{(2x-1)(x+1)}=\frac{a}{2x-1}+\frac{b}{x+1} \]
が成り立つなら$a=[ク],\ b=[ケコ]$である.
(3)$xy$平面上の原点に中心を持つ,半径$3$の円に,点$\mathrm{P}(5,\ 0)$から接線を引いた.このとき,接点は$2$つあり,それらの$x$座標は$\displaystyle \frac{[サ]}{[シ]}$である.また,接線の傾きは$\displaystyle \pm \frac{[ス]}{[セ]}$である.
(4)第$n$項が
\[ \frac{4}{n-\sqrt{4n+n^2}} \]
で表される数列の極限値は$[ソタ]$である.
星薬科大学 私立 星薬科大学 2015年 第2問
原点,点$(2,\ 2)$および点$(1,\ \sqrt{3})$を通る円がある.次の問に答えよ.

(1)この円の中心の座標は$([$10$],\ [$11$])$,半径は$[$12$]$である.
(2)点$\mathrm{A}(5,\ 1)$を通り円に接する$2$本の接線を考え,それぞれの接点を$\mathrm{B}$,$\mathrm{C}$とすると,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[$13$] \sqrt{[$14$]}}{[$15$]}$である.
東京電機大学 私立 東京電機大学 2015年 第3問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t) (t>1)$における接線を$\ell$とおく.$C$と$y$軸の共有点を$\mathrm{A}$,$\ell$と$x$軸の交点を$\mathrm{Q}$とおく.原点を$\mathrm{O}$とおき,三角形$\mathrm{AOQ}$の面積を$S(t)$とおく.$\mathrm{Q}$を通り$y$軸に平行な直線,$y$軸,$C$および$\ell$で囲まれた図形の面積を$T(t)$とおく.このとき,次の問に答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{Q}$の座標を求め,$S(t)$を$t$で表せ.
(3)$T(t)$を$t$で表せ.
(4)$\displaystyle \lim_{t \to 1+0}\frac{T(t)}{S(t)}$を求めよ.
東京電機大学 私立 東京電機大学 2015年 第5問
半円$C_1:x^2+y^2=16 (y \geqq 0)$と放物線$C_2:y=x^2+a$について,次の問に答えよ.

(1)$C_1$と$C_2$が相異なる$2$つの共有点をもつときの$a$の値の範囲を求めよ.
(2)$C_1$と$C_2$が$2$つの共有点$\mathrm{A}$,$\mathrm{B}$をもち,$\mathrm{A}$,$\mathrm{B}$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$において$\angle \mathrm{O}={60}^\circ$であるとき,点$\mathrm{A}$,$\mathrm{B}$の座標および$a$の値を求めよ.ただし,$\mathrm{A}$の$x$座標は$\mathrm{B}$の$x$座標より小さいとする.
(3)$(2)$のとき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
北海道薬科大学 私立 北海道薬科大学 2015年 第4問
$2$つの曲線
\[ C_1:y=x(x-3)^2,\quad C_2:y=m^2x \quad (m \text{は正の実数}) \]
は異なる$3$点で交わるものとする.原点以外の交点の$x$座標を$\alpha,\ \beta (0<\alpha<\beta)$とする.

(1)$C_1$は,$x=[ア]$で極大値$[イ]$,$x=[ウ]$で極小値$[エ]$をとる.
(2)$m$の値の範囲は$[オ]<m<[カ]$であり
\[ \alpha=[キ]-m,\quad \beta=[ク]+m \]
である.
(3)$C_1$と$C_2$で囲まれた$2$つの領域の面積が等しくなるのは,$m=[ケ]$のときである.このとき,$2$つの領域の面積の和は$[コ]$となる.
東京女子大学 私立 東京女子大学 2015年 第6問
座標平面において,原点$(0,\ 0)$を中心とする円に内接する正三角形で,点$(3,\ 4)$を頂点の$1$つとするものを考える.この三角形の他の$2$つの頂点の座標を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。