タグ「原点」の検索結果

22ページ目:全992問中211問~220問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第3問
原点を$\mathrm{O}$とする座標平面において点$\mathrm{R}(a,\ b) (a>0,\ b>0)$をとる.$x$軸の正の部分に点$\mathrm{P}$を,$y$軸の正の部分に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{R}$を通るようにとる.以下,$\displaystyle \angle \mathrm{OPQ}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$とおく.

(1)線分$\mathrm{PQ}$の長さを,$\theta$および$a,\ b$を用いて表しなさい.
(2)線分$\mathrm{PQ}$の長さを最小にする角$\theta$に対して,$\tan \theta$および線分$\mathrm{PQ}$の長さを$a,\ b$を用いて表しなさい.
(3)$a=1$,$b=8$とする.三角形$\mathrm{OPQ}$の$3$辺の長さの和を最小にする角$\theta$に対して,$\tan \theta$の値および線分$\mathrm{PQ}$の長さを求めなさい.
立教大学 私立 立教大学 2015年 第3問
座標平面上の曲線$C:y=x^3+x^2+ax$は,直線$\ell_1:y=-x$と原点$\mathrm{O}(0,\ 0)$で接している.このとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)直線$\ell_1$と$C$の共有点で$\mathrm{O}$以外の点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を通る$C$の接線$\ell_2$と$C$の共有点で点$\mathrm{P}$以外の点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を求めよ.
(4)点$\mathrm{Q}$を通る$C$の接線$\ell_3$と$C$の共有点で点$\mathrm{Q}$以外の点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を求めよ.
(5)三角形$\mathrm{PQR}$の面積を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
曲線$C:y=x^3$上に,次のようにして点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$,$\mathrm{P}_n$,$\cdots$をとる.

(i) $\mathrm{P}_1$は$C$上の与えられた点とする.
(ii) $\mathrm{P}_n$を通り,$\mathrm{P}_n$とは異なる点で$C$と接する直線が$1$つだけ存在するとき,その直線を$\ell_n$とし,$\ell_n$と$C$との接点を$\mathrm{P}_{n+1}$とする.もしこのような直線$\ell_n$が存在しない場合には$\mathrm{P}_{n+1}$は$\mathrm{P}_n$と同一の点とする.

点$\mathrm{P}_n$の$x$座標を$x_n$とするとき,次の問に答えよ.


(1)直線$\ell_n$が存在する場合$\displaystyle x_{n+1}=\frac{[ト]}{[ナ]}x_n$である.

(2)$\mathrm{P}_1$を原点とするとき$\displaystyle \lim_{n \to \infty}x_n=[ニ]$である.
(3)$\mathrm{P}_1$を点$(2,\ 8)$とするとき$\displaystyle \lim_{n \to \infty}x_n=[ヌ]$である.
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)$\displaystyle x=\frac{1-\sqrt{3}}{2}$のとき,$\displaystyle x^2+\frac{1}{x^2}$の値を求めよ.ただし,分母は有理化して答えよ.
(2)初項から第$3$項までの和が$-63$,初項から第$6$項までの和が$-4095$である等比数列の初項と公比を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を$1$回ずつ使って$5$桁の数を作る.このとき,$31402$は小さい方から数えて何番目の数か.
(4)次の方程式を解け.
\[ 2 \log_2 x=\log_2 (x+4)+1 \]
(5)直線$y=3x+a$は曲線$y=x^3$に点$\mathrm{A}$で接する.ただし,$a>0$とする.原点を$\mathrm{O}$とし,直線と曲線の接点以外の共有点を$\mathrm{B}$とするとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(6)定積分$\displaystyle \int_{-1}^2 |x-1| \, dx$の値を求めよ.
北星学園大学 私立 北星学園大学 2015年 第1問
定義域を$-2 \leqq x \leqq 3$とする放物線$y=ax^2+2ax+b$がある.ただし,その形は下に凸であるとする.以下の問に答えよ.

(1)この関数の最大値が$6$,最小値が$-2$であるとき,定数$a,\ b$の値を求めよ.
(2)$(1)$で求めた放物線を原点に関して対称移動したあとの放物線の式を求めよ.
広島工業大学 私立 広島工業大学 2015年 第1問
次の問いに答えよ.

(1)$9$人が無記名で$3$人$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のうちの$1$人に必ず投票するとき,開票結果は何通りあるか求めよ.
(2)$y=\sin 2x$のグラフを$x$軸方向へ$a$だけ,$y$軸方向へ$b$だけ平行移動したら,$\displaystyle y=-\cos \left( 2x+\frac{\pi}{3} \right)-2$のグラフと一致した.定数$a,\ b$の値を求めよ.ただし,$0 \leqq a \leqq \pi$とする.
(3)$\triangle \mathrm{ABC}$の辺上に点$\mathrm{P}$がある.$\mathrm{A}(-8,\ 2)$,$\mathrm{B}(2,\ -3)$,$\mathrm{C}(2,\ 2)$のとき,原点$\mathrm{O}(0,\ 0)$と点$\mathrm{P}$との距離の最小値を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第2問
$x^2-12x+y^2-24y+160=0$で表される円を$C$とおく.このとき,次の問に答えなさい.

(1)円$C$の中心$\mathrm{P}$は$([ア],\ [イウ])$で半径は$[エ] \sqrt{[オ]}$である.
(2)原点$\mathrm{O}(0,\ 0)$と中心$\mathrm{P}$を通る直線$\ell$を考える.直線$\ell$と円$C$の交点を原点に近い方から$\mathrm{Q}$,$\mathrm{R}$とおくと点$\mathrm{Q}$の$x$座標は$[カ]$,点$\mathrm{R}$の$x$座標は$[キ]$である($[カ]<[キ]$).
(3)直線$\ell$に平行で$y$切片が$k$の直線を$\ell(k)$とおく.ただし$0<k$とする.直線$\ell(k)$と円$C$が異なる$2$交点$\mathrm{S}$,$\mathrm{T}$をもつような$k$の値の範囲は$0<k<[クケ]$である.この$2$交点の$x$座標を$\alpha,\ \beta$とおくと$\displaystyle \alpha+\beta=[コサ]-\frac{[シ]}{[ス]}k$である.
(4)このとき$\displaystyle \mathrm{ST}^2=[セソ]-\frac{[タ]}{[チ]}k^2$である.$\mathrm{ST}$の中点を$\mathrm{U}$とおくと$\displaystyle \mathrm{PU}^2=\frac{[ツ]}{[テ]}k^2$なので三角形$\mathrm{PST}$の面積は$k=[ト] \sqrt{[ナ]}$のとき最大値$[ニヌ]$をとる.
金沢工業大学 私立 金沢工業大学 2015年 第6問
\begin{mawarikomi}{55mm}{
(図は省略)
}
座標平面において媒介変数表示された曲線
\[ x=\sin t,\quad y=\sin 2t \quad (0 \leqq t \leqq \pi) \]
を考え,この曲線で囲まれた図形を$D$とする.右図はこの曲線の概形を表す.

(1)この曲線上の点$(x,\ y)$の$y$座標が最大になるのは$\displaystyle t=\frac{\pi}{[ア]}$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[イ]}}{[ウ]},\ [エ] \right)$であり,$y$座標が最小になるのは$\displaystyle t=\frac{[オ]}{[カ]} \pi$のときで,その点の直交座標は$\displaystyle \left( \frac{\sqrt{[キ]}}{[ク]},\ [ケコ] \right)$である.また,この曲線が原点以外の点で$x$軸と交わるのは$\displaystyle t=\frac{\pi}{[サ]}$のときで,その交点の$x$座標は$[シ]$である.

(2)$\displaystyle \lim_{t \to +0} \frac{dy}{dx}=[ス]$であり,$\displaystyle \lim_{t \to \pi-0} \frac{dy}{dx}=[セソ]$である.

(3)図形$D$の面積は$\displaystyle \frac{[タ]}{[チ]}$である.
(4)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積は$\displaystyle \frac{[ツ]}{[テト]} \pi$である.

\end{mawarikomi}
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。