タグ「原点」の検索結果

20ページ目:全992問中191問~200問を表示)
奈良教育大学 国立 奈良教育大学 2015年 第4問
$1$つの円が定直線に接しながらすべることなく回転するとき,円周上の定点$\mathrm{P}$のえがく軌跡をサイクロイドという.
(図は省略)

上の図を参考に,以下の設問に答えよ.

(1)円$\mathrm{C}$を半径$1$の円,定直線を$x$軸とし,円$\mathrm{C}$が$x$軸に原点$\mathrm{O}$で接するとき,定点$\mathrm{P}$が$\mathrm{O}$の位置にあったとする.円$\mathrm{C}$が角$\theta$だけ回転したとき,円$\mathrm{C}$の中心の座標を求めよ.
(2)円$\mathrm{C}$が角$\theta$だけ回転したときの点$\mathrm{P}$の位置を$(x,\ y)$とするとき,$x,\ y$をそれぞれ$\theta$を使って表せ.
(3)$0 \leqq \theta \leqq 2\pi$において,$(2)$で与えられる点$\mathrm{P}$の軌跡(サイクロイド)と$x$軸とで囲まれた図形の面積を求めよ.
宮崎大学 国立 宮崎大学 2015年 第3問
座標平面上に点$\mathrm{P}$があり,次のルールにより,点$\mathrm{P}$は移動する.

$a,\ b,\ c$の文字がそれぞれ$1$つずつ書かれた球$3$個が入った袋から,$1$個取り出してそこに書かれている文字を読み,その文字が

$a$のとき,点$\mathrm{P}$は$x$軸の正の方向へ$1$だけ移動し,
$b$のとき,点$\mathrm{P}$は$x$軸の負の方向へ$1$だけ移動し,
$c$のとき,点$\mathrm{P}$は$y$軸の正の方向へ$1$だけ移動する.

最初,点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.この試行を,取り出した球を元に戻しながら,$5$回続けて行う.例えば,これによって得られた$5$個の文字が順に$b \to a \to c \to c \to a$であるとすれば,上のルールにより,点$\mathrm{P}$の位置の座標は,
\[ (0,\ 0) \to (-1,\ 0) \to (0,\ 0) \to (0,\ 1) \to (0,\ 2) \to (1,\ 2) \]
と変化する.
このとき,次の各問に答えよ.

(1)$y$軸上で点$\mathrm{P}$の移動が終了する場合,終了したときの位置の座標をすべて求めよ.
(2)点$\mathrm{P}$の移動が終了する位置の相異なる座標の個数を求めよ.
(3)点$\mathrm{P}$の移動が終了する位置の座標$(x,\ y)$が$|x| \leqq 1$,$1 \leqq y \leqq 2$となる確率を求めよ.
宮崎大学 国立 宮崎大学 2015年 第2問
座標平面上に点$\mathrm{P}$があり,次のルールにより,点$\mathrm{P}$は移動する.

$a,\ b,\ c$の文字がそれぞれ$1$つずつ書かれた球$3$個が入った袋から,$1$個取り出してそこに書かれている文字を読み,その文字が

$a$のとき,点$\mathrm{P}$は$x$軸の正の方向へ$1$だけ移動し,
$b$のとき,点$\mathrm{P}$は$x$軸の負の方向へ$1$だけ移動し,
$c$のとき,点$\mathrm{P}$は$y$軸の正の方向へ$1$だけ移動する.

最初,点$\mathrm{P}$は原点$\mathrm{O}$にあるものとする.この試行を,取り出した球を元に戻しながら,$5$回続けて行う.例えば,これによって得られた$5$個の文字が順に$b \to a \to c \to c \to a$であるとすれば,上のルールにより,点$\mathrm{P}$の位置の座標は,
\[ (0,\ 0) \to (-1,\ 0) \to (0,\ 0) \to (0,\ 1) \to (0,\ 2) \to (1,\ 2) \]
と変化する.
このとき,次の各問に答えよ.

(1)$y$軸上で点$\mathrm{P}$の移動が終了する場合,終了したときの位置の座標をすべて求めよ.
(2)点$\mathrm{P}$の移動が終了する位置の相異なる座標の個数を求めよ.
(3)点$\mathrm{P}$の移動が終了する位置の座標$(x,\ y)$が$|x| \leqq 1$,$1 \leqq y \leqq 2$となる確率を求めよ.
福島大学 国立 福島大学 2015年 第4問
空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ -1)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$の方程式を求めなさい.
(2)平面$\alpha$に垂直になるように原点$\mathrm{O}$から直線を引いたとき,平面$\alpha$との交点$\mathrm{T}$の座標を求めなさい.
(3)$\triangle \mathrm{ABC}$の面積を求めなさい.
(4)四面体$\mathrm{OABC}$の体積を求めなさい.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第1問
直線$L$を$2x+y=4n$とする.ただし,$n$は自然数とする.原点を$\mathrm{O}$とし,直線$L$と$x$軸との交点を$\mathrm{A}$,直線$L$と$y$軸との交点を$\mathrm{B}$とした三角形$\mathrm{OAB}$を考える.以下の問いに答えよ.

(1)交点$\mathrm{A}$および交点$\mathrm{B}$の座標をそれぞれ求めよ.
(2)直線$M$を$x=k$(ただし$k=0,\ 1,\ \cdots,\ 2n$)とするとき,直線$L$と直線$M$の交点$\mathrm{P}$の座標を求めよ.
(3)$(2)$の直線$M$上の格子点($x$座標および$y$座標がともに整数である点)のうち,三角形$\mathrm{OAB}$の周上および内部にある格子点の総数$T_k$を求めよ.
(4)三角形$\mathrm{OAB}$の周上にある格子点および内部にある格子点の総数$T_n$を求めよ.
(5)三角形$\mathrm{OAB}$の面積$S_n$を求めよ.また,$(4)$で得られた格子点の総数$T_n$と面積$S_n$の比に関する次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{T_n}{S_n} \]
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
筑波大学 国立 筑波大学 2015年 第6問
$\alpha$を実数でない複素数とし,$\beta$を正の実数とする.以下の問いに答えよ.ただし,複素数$w$に対してその共役複素数を$\overline{w}$で表す.

(1)複素数平面上で,関係式$\alpha \overline{z}+\overline{\alpha}z=|z|^2$を満たす複素数$z$の描く図形を$C$とする.このとき,$C$は原点を通る円であることを示せ.
(2)複素数平面上で,$(z-\alpha)(\beta-\overline{\alpha})$が純虚数となる複素数$z$の描く図形を$L$とする.$L$は$(1)$で定めた$C$と$2$つの共有点をもつことを示せ.また,その$2$点を$\mathrm{P}$,$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さを$\alpha$と$\overline{\alpha}$を用いて表せ.
(3)$\beta$の表す複素数平面上の点を$\mathrm{R}$とする.$(2)$で定めた点$\mathrm{P}$,$\mathrm{Q}$と点$\mathrm{R}$を頂点とする三角形が正三角形であるとき,$\beta$を$\alpha$と$\overline{\alpha}$を用いて表せ.
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$にあてはまる数または式を記入せよ.

(1)空間内の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(2,\ 2,\ 0)$とする.実数$p,\ q$を用いて点$\mathrm{H}$を$\overrightarrow{\mathrm{AH}}=p \overrightarrow{\mathrm{AB}}+q \overrightarrow{\mathrm{AC}}$で定める.原点を$\mathrm{O}(0,\ 0,\ 0)$として,$\overrightarrow{\mathrm{OH}}$が$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$の両方に垂直であるとき,$p=[ア]$,$q=[イ]$である.
(2)不等式$x+3<5 |x-1|$を満たす実数$x$の範囲は,$x<[ウ]$または$x>[エ]$である.
(3)多項式$(x^5+1)^2$を$x^2+x+1$で割った余りを$Ax+B$とすると,定数$A$と$B$は$A=[オ]$,$B=[カ]$である.
(4)$0<a<1$のとき$\displaystyle \lim_{n \to \infty} \frac{1}{n} \log (a^{2n}+a^{3n})=[キ]$である.
(5)大中小の$3$つのサイコロをふって,出た目の和が$9$になる確率は$[ク]$である.
(6)$0 \leqq \theta \leqq \pi$のとき,$\displaystyle \int_0^{\frac{\pi}{2}} \cos (x-\theta) \, dx$の最大値は$[ケ]$であり,最小値は$[コ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
座標空間内の原点$\mathrm{O}$,$z$座標が正である点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を頂点とする立方体$\mathrm{OP}_1 \mathrm{P}_2 \mathrm{P}_3-\mathrm{P_4}\mathrm{P_5}\mathrm{P_6}\mathrm{P_7}$を考える.点$\mathrm{P}_1$の座標は$(2,\ 5,\ 4)$であり,点$\mathrm{P}_3$は$zx$平面上にあるとする.このとき,点$\mathrm{P}_3$の座標は$[ソ]$,点$\mathrm{P}_4$の座標は$[タ]$,点$\mathrm{P}_6$の座標は$[チ]$である.点$\mathrm{P}_k (k=1,\ 2,\ \cdots,\ 7)$を$xy$平面に下ろした垂線を$\mathrm{P}_k \mathrm{Q}_k$とするとき,四角形$\mathrm{OQ}_1 \mathrm{Q}_2 \mathrm{Q}_3$の面積は$[ツ]$,六角形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_7 \mathrm{Q}_4 \mathrm{Q}_5$の面積は$[テ]$である.また,立方体と$z$軸との交わりは線分となり,その線分の長さは$[ト]$となる.
(図は省略)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(0,\ 1,\ 2)$,$\mathrm{B}(1,\ 2,\ 0)$がある.

(1)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[$1$][$2$]}}{[$3$]}$である.
(2)点$\mathrm{C}$の位置を,位置ベクトル
\[ \overrightarrow{\mathrm{OC}}=\frac{2}{3} \overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{OB}} \]
によって定める.このとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$の面積の比は
\[ \frac{\triangle \mathrm{ABC}}{\triangle \mathrm{OAB}}=\frac{[$4$]}{[$5$]} \]
である.
(3)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方に垂直な単位ベクトルのうちの$1$つは,
\[ \frac{\sqrt{[$6$][$7$]}}{21} \left( [$8$],\ -[$9$],\ 1 \right) \]
である.
(4)$t$を実数として,点$\displaystyle \mathrm{D} \left( \frac{t^2}{4},\ 4t,\ 19 \right)$を定める.このとき,四面体$\mathrm{ABCD}$の体積$V(t)$は
\[ V(t)=\frac{[$10$]}{[$11$][$12$]} \left( t^2-[$13$]t+[$14$][$15$] \right) \]
である.
(5)数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_{n+1}=a_n+\frac{n+1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$V(a_n)$は,$n=[$16$]$で最小となる.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。