タグ「原点」の検索結果

18ページ目:全992問中171問~180問を表示)
山梨大学 国立 山梨大学 2015年 第2問
座標平面上において,曲線$C:y=e^{2x}$上の点$\mathrm{P}(a,\ e^{2a})$における接線$\ell$は原点$\mathrm{O}$を通るとする.

(1)$a$の値を求めよ.
(2)不定積分$\displaystyle \int \log t \, dt$および$\displaystyle \int (\log t)^2 \, dt$を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2015年 第5問
点$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(-6,\ 0)$をとる.また,曲線
\[ x=3 \cos \theta,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq \pi) \]
を$C_1$とする.曲線$C_2,\ C_3,\ \cdots,\ C_n,\ \cdots$を次のように順次定義する.

「点$\mathrm{Q}$が曲線$C_n$上を動くとき,線分$\mathrm{PQ}$を$1:2$に内分する点$\mathrm{R}$のなす曲線を$C_{n+1}$とする.」
また, 各自然数$n$に対して,点$\mathrm{P}$を通る$x$軸と異なる直線が曲線$C_n$と接するとき,その接点を$\mathrm{A}_n$とする.次に,$\theta$を$1$つ固定し,点$\mathrm{X}_1(x_1,\ y_1)$を$x_1=3 \cos \theta$,$y_1=3 \sin \theta$となる曲線$C_1$上の点とし,点$\mathrm{X}_2,\ \mathrm{X}_3,\ \cdots,\ \mathrm{X}_n,\ \cdots$を次のように順次定義する.
「線分$\mathrm{PX}_n$を$1:2$に内分する点を$\mathrm{X}_{n+1}(x_{n+1},\ y_{n+1})$とする.」

(1)$x_2$および$y_2$を$\theta$を用いて表せ.
(2)$\angle \mathrm{A}_1 \mathrm{PO}$および$\angle \mathrm{A}_2 \mathrm{PO}$を求めよ.
(3)$x_n,\ y_n$を$\theta$を用いて表せ.
(4)極限値$\displaystyle \lim_{n \to \infty}x_n$および$\displaystyle \lim_{n \to \infty}y_n$を求めよ.
(5)直線$\mathrm{A}_n \mathrm{A}_{n+1}$,曲線$C_n$および$C_{n+1}$で囲まれた領域の面積を$a_n$とするとき,極限値$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
鳴門教育大学 国立 鳴門教育大学 2015年 第2問
$m$を定数とし,放物線$y=x^2+mx-2m+1$を$C_1$とします.次の問いに答えなさい.

(1)$C_1$を原点に関して対称移動した後,さらに$x$軸方向に$1$,$y$軸方向に$-m$だけ平行移動した放物線を$C_2$とするとき,放物線$C_2$の方程式を求めなさい.
(2)$2$つの放物線$C_1,\ C_2$がともに,$x$軸と共有点をもつような定数$m$の値の範囲を求めなさい.
鳴門教育大学 国立 鳴門教育大学 2015年 第5問
数直線上で,点$\mathrm{P}$は原点$\mathrm{O}$を出発点とし,さいころを投げて偶数の目が出たときは正の方向へ$1$だけ進み,奇数の目が出たときは負の方向へ$1$だけ進むものとします.$k$回さいころを投げた後の,点$\mathrm{P}$の位置の座標を$X(k)$とするとき,次の確率を求めなさい.

(1)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$である確率
(2)$X(1),\ X(2),\ \cdots,\ X(6)$のうち最も大きな数が$3$以下である確率
岐阜大学 国立 岐阜大学 2015年 第4問
関数$f(x)=e^{-x}$を考える.曲線$y=f(x)$を$C$とする.$t>0$として,曲線$C$上の点$(t,\ f(t))$における接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.以下の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)原点を$\mathrm{O}$とするとき,$\triangle \mathrm{OPQ}$の面積を$S$とする.$t$が変化するとき,$S$の最大値を求めよ.また,そのときの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(3)$C$と$(2)$で求めた$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
茨城大学 国立 茨城大学 2015年 第3問
$\mathrm{O}$を原点とする$xyz$空間内の$2$点を$\mathrm{A}(3,\ -1,\ 2)$,$\mathrm{B}(0,\ 5,\ 8)$とする.$\overrightarrow{\mathrm{AB}}=3 \overrightarrow{\mathrm{AP}}$を満たす点$\mathrm{P}$を通り,直線$\mathrm{AB}$に垂直な平面$\alpha$を考える.このとき,以下の各問に答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)平面$\alpha$が$x$軸,$y$軸,$z$軸と交わる点をそれぞれ$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$とするとき,四面体$\mathrm{OLMN}$の体積を求めよ.
信州大学 国立 信州大学 2015年 第1問
原点を中心とする半径$1$の円$\mathrm{O}$の上に,$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( -\frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$をとる.線分$\mathrm{AC}$の中点を$\mathrm{M}$,線分$\mathrm{BC}$の中点を$\mathrm{N}$とする.$2$点$\mathrm{M}$,$\mathrm{N}$を通る直線が円$\mathrm{O}$と交わる$2$点のうち,$\mathrm{N}$に近い方の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{NQ}$の長さを求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第6問
$xy$平面において,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円を$C$とする.円$C$上に原点$\mathrm{O}$とは異なる点$\mathrm{P}$を取り,直線$\mathrm{OP}$と直線$y=1$の交点を$\mathrm{Q}$とする.また,$x$座標が$\mathrm{Q}$と同じで,$y$座標が$\mathrm{P}$と同じである点を$\mathrm{R}$とする.

(1)点$\mathrm{P}$が円$C$上の原点$\mathrm{O}$とは異なる点全体を動くとき,点$\mathrm{R}$の軌跡の方程式を求めよ.
(2)$(1)$で求めた曲線と$x$軸および$2$直線$x=0$,$x=1$で囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2015年 第2問
座標平面上の相異なる$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$2$つの条件
\[ \left\{ \begin{array}{l}
|\overrightarrow{\mathrm{PQ}}|=|\overrightarrow{\mathrm{QR}}| \\
\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=-\displaystyle\frac{1}{3} \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \cdots\cdots (*) \]
を満たしながら動くものとする.$|\overrightarrow{\mathrm{PQ}}|$を$a$とする.以下の各問に答えよ.

(1)$|\overrightarrow{\mathrm{PR}}|$を$a$で表せ.
(2)$\displaystyle \angle \mathrm{PQR}=\frac{2}{3} \pi$のときの$a$を求めよ.また,$\angle \mathrm{PQR}=\pi$のときの$a$を求めよ.
(3)$a$がとり得る値の範囲を求めよ.
(4)原点を$\mathrm{O}$とし,点$\mathrm{R}$を$(1,\ 0)$に固定する.点$\mathrm{P}$,$\mathrm{Q}$が$(*)$および
\[ |\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{PQ}}| \]
を満たしながら動くとする.点$\mathrm{P}$が描く軌跡を求めよ.
(5)$(4)$において,点$\mathrm{P}$が描く軌跡の長さを求めよ.
岩手大学 国立 岩手大学 2015年 第3問
$\mathrm{O}$を原点とする座標空間に$3$つの点$\mathrm{A}(2,\ 1,\ 0)$,$\mathrm{B}(5,\ 2,\ -1)$,$\mathrm{C}(1,\ -5,\ 1)$をとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,また,$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$S$とする.このとき,以下の問いに答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を求めよ.また,$\cos \angle \mathrm{AOB}$を求めよ.
(2)$\triangle \mathrm{OAB}$の面積を求めよ.
(3)点$\mathrm{C}$から平面$S$に下ろした垂線と平面$S$との交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$を満たす$s,\ t$を求めよ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。