タグ「原点」の検索結果

16ページ目:全992問中151問~160問を表示)
新潟大学 国立 新潟大学 2015年 第3問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周$C$上の点を$\mathrm{A}(a,\ b)$とし,$f(x)=(x-a)^2+b$とする.点$\mathrm{B}(0,\ -2)$から放物線$y=f(x)$に引いた接線を$\ell_1$,$\ell_2$とし,接点をそれぞれ$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q))$とする.ただし$p<q$である.放物線$y=f(x)$と$2$直線$\ell_1$,$\ell_2$とで囲まれた部分の面積を$S$とする.次の問いに答えよ.

(1)接線$\ell_1$の方程式と接点$\mathrm{P}$の座標,および接線$\ell_2$の方程式と接点$\mathrm{Q}$の座標を$a,\ b$を用いて表せ.
(2)面積$S$を$b$を用いて表せ.
(3)点$\mathrm{A}$が円周$C$上を動くとき,面積$S$の最大値とそのときの点$\mathrm{A}$の座標$(a,\ b)$を求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
九州工業大学 国立 九州工業大学 2015年 第2問
座標平面上に原点を中心とする半径$1$の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ -1)$,$\mathrm{B}(0,\ -1)$があり,点$\mathrm{A}$を通る傾き$k$の直線$\ell$を考える.直線$\ell$は円$C$と異なる$2$点で交わるものとし,点 $\mathrm{A}$から遠い方の交点を$\mathrm{P}$,近い方の交点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$の座標をそれぞれ$k$を用いて表せ.
(3)三角形$\mathrm{BPQ}$の面積を$k$を用いて表せ.
(4)三角形$\mathrm{BPQ}$の面積を最大にする$k$を求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
熊本大学 国立 熊本大学 2015年 第2問
$p,\ q,\ r$を実数とする.空間内の$3$点$\mathrm{A}(1,\ p,\ 0)$,$\mathrm{B}(q,\ 1,\ 1)$,$\mathrm{C}(-1,\ -1,\ r)$が一直線上にあるとき,以下の問いに答えよ.ただし,$\mathrm{O}$を原点とする.

(1)$p$は$1$でも$-1$でもないことを示せ.
(2)$q,\ r$を$p$を用いて表せ.
(3)$p^\prime,\ q^\prime,\ r^\prime$を実数とし,空間内の$3$点を$\mathrm{A}^\prime(1,\ p^\prime,\ 0)$,$\mathrm{B}^\prime(q^\prime,\ 1,\ 1)$,$\mathrm{C}^\prime(-1,\ -1,\ r^\prime)$とする.ベクトル$\overrightarrow{\mathrm{OA}^\prime}$,$\overrightarrow{\mathrm{OB}^\prime}$,$\overrightarrow{\mathrm{OC}^\prime}$がいずれもベクトル$\overrightarrow{\mathrm{AB}}$に垂直であるとき,$p^\prime,\ q^\prime,\ r^\prime$を$p$を用いて表せ.
(4)$(3)$における$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$は一直線上にないことを示せ.
佐賀大学 国立 佐賀大学 2015年 第2問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。