タグ「原点」の検索結果

11ページ目:全992問中101問~110問を表示)
立教大学 私立 立教大学 2016年 第2問
$a,\ b$を実数,$t$を正の実数とする.$\mathrm{O}$を原点とする座標平面上の$2$つの放物線
\[ C_1:y=-x^2,\quad C_2:y=x^2+ax+b \]
が,点$\mathrm{P}(t,\ -t^2)$において同じ接線$\ell$を持つとする.また,点$\mathrm{P}$における$C_1$の法線を$m$とする.このとき,次の問いに答えよ.

(1)$\ell$と$m$の方程式をそれぞれ$t$を用いて表せ.
(2)$a,\ b$をそれぞれ$t$を用いて表せ.
(3)$m$と$C_2$の軸および$C_2$で囲まれる図形の面積$S_1$を$t$を用いて表せ.
(4)$\ell$と$y$軸の交点を$\mathrm{Q}$とし,三角形$\mathrm{OPQ}$の面積を$S_2$とするとき,極限$\displaystyle \lim_{t \to \infty} \frac{S_1}{S_2}$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第13問
原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(6,\ 8)$,点$\mathrm{B}(21,\ 0)$を頂点とする$\triangle \mathrm{OAB}$について考える.$\triangle \mathrm{OAB}$の内接円の中心の座標を$(p,\ q)$とする.$|\displaystyle\frac{2p|{q}}$の値を求めよ.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
北里大学 私立 北里大学 2016年 第2問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

$xy$平面上のいくつかの曲線および直線について考える.

(1)曲線$C_1:y=x(x-2)$と$x$軸によって囲まれた領域の面積を$S$とすれば$\displaystyle S=\frac{[ア]}{[イ]}$である.
原点を通る直線$\ell:y=kx$と$C_1$は,これらが接する場合を除き$x=0$および$x=[ウ]+[エ]k$で交わる.
また,$\ell$が$S$を等分するとき,$\displaystyle k=[オ]+\left( [カ] \right)^{1/ \mkakko{キ}}$である.
(2)曲線$C_2:y=x |x-2|$と,直線$\ell:y=kx$が原点で接するとき,$k=[ク]$であり,$C_2$と$\ell$は$x=[ケ]$で再び交わる.このとき,$C_2$と$\ell$によって囲まれた領域の面積は$[コ]$である.
(3)曲線$C_3:y=x(x-2)^2$と$x$軸によって囲まれた領域の面積は$\displaystyle \frac{[サ]}{[シ]}$である.
$C_3$と直線$\ell:y=kx$が原点で接するとき,$k=[ス]$であり,$C_3$と$\ell$は$x=[セ]$で再び交わる.このとき,$C_3$と$\ell$によって囲まれた領域の面積は$\displaystyle \frac{[ソ][タ]}{[チ]}$である.
$C_3$は$\displaystyle x=\frac{[ツ]}{[テ]}$で極大値をとるから,曲線$C_3$と,直線$L:y=a$が異なる$3$つの共有点をもつような$a$の範囲は,$\displaystyle 0<a<\frac{[ト][ナ]}{[ニ][ヌ]}$である.
同志社大学 私立 同志社大学 2016年 第3問
$r$を$r>1$である定数とする.$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(a,\ b)$は,原点$\mathrm{O}$を除く円$C:(x-r)^2+y^2=r^2$上を動くとする.点$\mathrm{P}$に対して点$\mathrm{Q}(p,\ q)$は,$\mathrm{OP} \times \mathrm{OQ}=1$を満たし,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$は一直線上にあり,$p>0$であるとする.また点$\mathrm{Q}$に対して,点$\mathrm{R}(p,\ -q)$を考える.このとき次の問いに答えよ.

(1)$p,\ q$をそれぞれ$a,\ b$を用いて表せ.
(2)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{R}$の軌跡を$r$を用いて表せ.
(3)$2$点$\mathrm{P}$,$\mathrm{R}$の距離$d$を$a,\ r$を用いて表せ.
(4)$r$が$\displaystyle r^2>\frac{1}{4}(2+\sqrt{5})$を満たすとき,$2$点$\mathrm{P}$,$\mathrm{R}$の距離$d$の最小値とそのときの$a$の値を$r$を用いて表せ.
大阪薬科大学 私立 大阪薬科大学 2016年 第3問
次の問いに答えなさい.

点$\mathrm{O}$を原点とする$xy$座標平面上に点$\mathrm{A}(2,\ 4)$と点$\mathrm{B}(5,\ 2)$,および直線$\ell$がある.

(1)$\ell$の方程式は$\displaystyle y=\frac{1}{2}(-x+1)$である.

(i) 点$\mathrm{P}$が$\ell$上の点であるとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(ii) $\ell$上の$\mathrm{P}$に対し,$|\overrightarrow{\mathrm{OP}}|^2$のとり得る最小の値を求めよ.

(2)$a$を$1$以上の定数とする.$xy$座標平面上の点$\mathrm{Q}$が,線分$\mathrm{AQ}$の中点$\mathrm{M}$を用いて,
\[ a|\overrightarrow{\mathrm{AQ}}|^2=4|\overrightarrow{\mathrm{OM}}|^2+4|\overrightarrow{\mathrm{BM}}|^2 \]
を満たしながら動くとき,その$\mathrm{Q}$の軌跡を$C$とする.

(i) $C$が直線となるときの$a$の値を求めよ.
(ii) $a=1$のとき,$C$上の$\mathrm{Q}$に対し,$|\overrightarrow{\mathrm{OQ}}|^2$のとり得る最小の値を求めよ.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
金沢工業大学 私立 金沢工業大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 4)$,$\mathrm{B}(6,\ 0)$をとる.点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_1$,線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{M}$を通り直線$\ell_1$に垂直な直線を$\ell_2$とする.

(1)点$\mathrm{M}$の座標は$([コ],\ [サ])$である.
(2)直線$\ell_1$の方程式は$y=-x+[シ]$であり,直線$\ell_2$の方程式は$y=x-[ス]$である.
(3)線分$\mathrm{OB}$の垂直二等分線と直線$\ell_2$との交点の座標は$([セ],\ [ソ])$である.
(4)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式は$x^2+y^2-[タ]x-[チ]y=0$である.
東邦大学 私立 東邦大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面において,点$\mathrm{P}(3,\ 1)$を通る直線が円$x^2+y^2=1$上の$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$\mathrm{A}$と$\mathrm{B}$はそれぞれ第$1$象限,第$2$象限内の点である.$\mathrm{PA}=\sqrt{5}$のとき,$\displaystyle \mathrm{AB}=\frac{[ケ] \sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[シ]}{[ス]}$である.
東邦大学 私立 東邦大学 2016年 第11問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の成分はそれぞれ$(1,\ 0)$,$(0,\ 1)$である.線分$\mathrm{AB}$を$(1-t):t$に内分する点を$\mathrm{C}$,線分$\mathrm{BO}$を$t:(1-t)$に内分する点を$\mathrm{D}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AD}}$のなす角を$\theta$とするとき,$\displaystyle -\frac{1}{\sqrt{2}}<\cos \theta<\frac{1}{\sqrt{2}}$となる$t$の値の範囲は$\displaystyle 0<t<\frac{[ア]}{[イ]}$である.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。