タグ「単調」の検索結果

2ページ目:全17問中11問~20問を表示)
大分大学 国立 大分大学 2012年 第3問
関数$\displaystyle y=f(x)=x^3-\frac{3}{2}x^2+\frac{3}{2}$に関して,次の問いに答えよ.

(1)$y=f(x)$と$y=x$のグラフを描け.
(2)$\displaystyle 1<x_0<\frac{3}{2}$に対して,$x_{n+1}=f(x_n) \ (n=0,\ 1,\ 2,\ \cdots)$を定義する.このとき,$x_n > x_{n+1} \ (n=0,\ 1,\ 2,\ \cdots)$を示せ.
(3)数列$\{a_n\}$が単調減少で,ある実数$L$に対して$a_n > L \ (n=0,\ 1,\ 2,\ \cdots)$ならば$\displaystyle \lim_{n \to \infty}a_n$が存在する.このことを用いて,数列$\{x_n\}$の極限を求めよ.
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
旭川医科大学 国立 旭川医科大学 2011年 第3問
曲線$y=e^{ax+b} \ (a \geqq 1)$と曲線$y=e^{-x}$が一点で交わり,交点におけるそれぞれの接線が垂直に交わっているとする.次の問いに答えよ.

(1)交点の座標を$(x(a),\ y(a))$とおくとき,$b,\ x(a),\ y(a)$をそれぞれ$a$を用いて表せ.
(2)曲線$y=e^{ax+b} \ (a \geqq 1)$を$C(a)$で表す.曲線$C(a)$と曲線$C(a+1)$の交点の$x$座標を$X(a)$とおくとき,
\[ \lim_{a \to \infty}(X(a)-x(a)) \]
を求めよ.
(3)$X(a)-x(a)$は$a \geqq 1$のとき単調減少であることを示せ.
宮城教育大学 国立 宮城教育大学 2011年 第4問
関数$f(x)=e^{3x}+e^{-3x}-12(e^x+e^{-x})$を考える.このとき,次の問いに答えよ.

(1)$g(x)=e^x-e^{-x}$とおく.関数$g(x)$は単調増加であることを示せ.
(2)$u=g(x)$とおくとき,$f(x)$の導関数$f^\prime(x)$を$u$を用いて表せ.
(3)関数$y=f(x)$の増減,極値を調べ,そのグラフをかけ.
大阪市立大学 公立 大阪市立大学 2011年 第3問
$p,\ q$は正の実数で$p > q$とする.$x > 0$において,2つの関数
\[ f(x) = e^{px}+e^{-px},\quad g(x) = e^{qx}+e^{-qx} \]
を考える.次の問いに答えよ.

(1)$f(x) > 2$を示せ.
(2)$f(x) > g(x)$を示せ.
(3)$\displaystyle h(x) = \frac{f^{\, \prime}(x)-g^{\, \prime}(x)}{f(x)-g(x)}$とするとき,$h(x)$は$x > 0$において単調減少であることを示せ.
大阪府立大学 公立 大阪府立大学 2011年 第5問
2つの関数$f(t)=t \log t$と$g(t)=t^3-9t^2+24t$が与えられているとき,以下の問いに答えよ.

(1)$f(t)$は$t \geqq 1$の範囲で単調に増加することを示せ.
(2)$t \geqq 1$のとき
\[ \left\{
\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}
\right. \]
と媒介変数表示される関数$y=h(x)$の$x \geqq 0$の範囲における増減を調べて,極大値と極小値を求めよ.
(3)$xy$平面上で,曲線$y=h(x)$,2直線$x=f(2),\ x=f(4)$と$x$軸で囲まれた部分の面積を求めよ.
筑波大学 国立 筑波大学 2010年 第3問
$n$を自然数とし,1から$n$までの自然数の積を$n!$で表す.このとき以下の問いに答えよ.

(1)単調に増加する連続関数$f(x)$に対して,不等式$\displaystyle \int_{k-1}^k f(x) \, dx \leqq f(k)$を示せ.
(2)不等式$\displaystyle \int_1^n \log x\, dx \leqq \log n!$を示し,不等式$n^ne^{1-n} \leqq n!$を導け.
(3)$x \geqq 0$に対して,不等式$x^ne^{1-x} \leqq n!$を示せ.
スポンサーリンク

「単調」とは・・・

 まだこのタグの説明は執筆されていません。