タグ「単位」の検索結果

3ページ目:全56問中21問~30問を表示)
福岡大学 私立 福岡大学 2015年 第8問
単位円周上の$2n$個の点$\displaystyle \mathrm{P}_k \left( \cos \frac{k}{n}\pi,\ \sin \frac{k}{n}\pi \right) (k=0,\ 1,\ 2,\ \cdots,\ 2n-1)$を頂点とする正$2n$角形がある.この$2n$個の点$\mathrm{P}_0,\ \mathrm{P}_1,\ \cdots,\ \mathrm{P}_{2n-1}$から$4$点を選び,順に結んで$4$角形を作るとき,$4$つの角がすべて直角である$4$角形は$[ ]$通りある.また,$4$つの角がどれも直角ではない$4$角形は$[ ]$通りある.ただし,$n \geqq 3$である.
上智大学 私立 上智大学 2015年 第2問
座標平面上で$2$つのベクトル
\[ \overrightarrow{p}=(p,\ 0),\quad \overrightarrow{q}=(q,\ 0) \]
を考える.ただし,$0<p<1$,$q>1$とする.$\overrightarrow{x}$を単位ベクトルとして,以下の問に答えよ.

(1)任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{p}$は直交しないことを示せ.
(2)$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,$|\overrightarrow{x}-\overrightarrow{q}|$を$q$を用いて表せ.
(3)$\overrightarrow{p},\ \overrightarrow{q}$が次の条件をみたすとする.
条件:任意の$\overrightarrow{x}$について$|\overrightarrow{x}-\overrightarrow{p}|:|\overrightarrow{x}-\overrightarrow{q}|=1:2$となる.

(i) $p$および$q$の値を求めよ.
(ii) $\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,原点を始点として$\overrightarrow{x}$,$\overrightarrow{p}$,$\overrightarrow{q}$を図示せよ.
(iii) 実数$a$に対して,
\[ \overrightarrow{s}=\frac{\overrightarrow{x}-\overrightarrow{p}}{|\overrightarrow{x}-\overrightarrow{p}|^3}-a \frac{\overrightarrow{x}-\overrightarrow{q}}{|\overrightarrow{x}-\overrightarrow{q}|^3} \]
とおく.任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{s}$が平行となるときの$a$の値を求めよ.
中央大学 私立 中央大学 2015年 第2問
ある鉄道会社では平成$26$年$3$月まで,最低運賃$130$円から$1000$円まで$10$円きざみで運賃が設定されていた.この年$4$月からの消費税率の引き上げに伴い,次のように運賃を改定することにした.

\mon[$①$] $\mathrm{IC}$カードを利用する場合
改定前の運賃に$108/105$を乗じ,$1$円未満の端数を切り捨て,$1$円単位にした額を新運賃とする.
\mon[$②$] 券売機等で発売する切符を利用する場合
改定前の運賃に$108/105$を乗じ,$10$円未満の端数を切り上げ,$10$円単位とした額を新運賃とする.

以下の問いに答えよ.

(1)切符を利用する場合,$20$円の値上げとなるような改定前運賃の範囲を求めよ.
(2)運賃改定後,$\mathrm{IC}$カードを利用した場合と,切符を利用した場合で運賃の差が最大となるような改定前運賃をすべて求めよ.
(3)切符を利用する場合の規則を,$10$円未満の端数を切り上げるのではなく,四捨五入する計算方法に変えたとする.このとき,値上げにならない運賃の範囲を求めよ.
昭和薬科大学 私立 昭和薬科大学 2015年 第3問
$1$辺の長さが$6$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える.辺$\mathrm{FG}$の中点を$\mathrm{I}$とし,辺$\mathrm{GH}$を$1:2$に内分する点を$\mathrm{J}$とする.また,$3$点$\mathrm{A}$,$\mathrm{I}$,$\mathrm{J}$を通る平面と辺$\mathrm{BF}$の交点を$\mathrm{K}$とし,$\mathrm{A}$から$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$に向かう単位ベクトルをそれぞれ$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$とする.

(1)$\overrightarrow{\mathrm{AI}},\ \overrightarrow{\mathrm{AJ}}$を$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{I}$,$\mathrm{J}$を通る平面と垂直なベクトル$\overrightarrow{n}$が$\overrightarrow{n}=-3 \overrightarrow{i}+a \overrightarrow{j}+b \overrightarrow{k}$と表されるとき,$a$と$b$の値を求めよ.
(3)線分$\mathrm{BK}$の長さを求めよ.
愛知教育大学 国立 愛知教育大学 2014年 第7問
$\displaystyle 0<t<\frac{\pi}{2}$とする.座標平面上に,原点$\mathrm{O}$を中心とする単位円$C$上の点$\mathrm{P}(\cos t,\ \sin t)$と,$x$軸上の点$\mathrm{Q}(\cos t,\ 0)$をとり,点$\mathrm{P}$における$C$の接線を$\ell$とする.また,点$\mathrm{Q}$から$\ell$に下ろした垂線と$\ell$との交点を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\mathrm{PR}$と$\mathrm{QR}$を$t$を用いて表せ.
(3)$(2)$で求めた$\mathrm{PR}$を$x(t)$,$\mathrm{QR}$を$y(t)$とする.点$\mathrm{S}(x(t),\ y(t))$の軌跡を求めよ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第3問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
群馬大学 国立 群馬大学 2014年 第2問
座標平面において,動点$\mathrm{P}(x,\ y)$は単位円$C$上の点$\mathrm{Q}(1,\ 0)$を出発し,$C$上を反時計回りに$1$周する.弧$\mathrm{PQ}$の長さは,出発してからの時間に比例する.$\mathrm{P}$が$1$周するのに$T$秒かかる.このとき,以下の問いに答えよ.

(1)出発してから$t$秒後($0 \leqq t \leqq T$)の点$\mathrm{P}(x,\ y)$について$x,\ y$を$t$と$T$を用いて表せ.
(2)出発してから$t$秒後($\displaystyle 0 \leqq t \leqq \frac{T}{4}$)の点$\mathrm{P}(x,\ y)$に対して$z=2x^2+xy+y^2$を考える.$z$の最大値と最小値を求めよ.また最大値,最小値をとるのは出発してから何秒後か$T$を用いて表せ.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
名城大学 私立 名城大学 2014年 第2問
$2$つの物体$\mathrm{A}$,$\mathrm{B}$が平面上をそれぞれ一定の速度$u,\ v$($\mathrm{km}/$時)で$\mathrm{A}$は真東に,$\mathrm{B}$は真北に移動している.最初,$2$つの物体間の距離は$10 \, \mathrm{km}$であった.$1$時間後,その距離は$4 \, \mathrm{km}$となり,さらに$1$時間後は$12 \, \mathrm{km}$となった.$x$軸,$y$軸の正の方向をそれぞれ真東,真北として座標軸をとるとき,以下の問に答えよ.

(1)$x$軸,$y$軸上に,$\mathrm{A}$,$\mathrm{B}$の初期の位置をそれぞれ$(x,\ 0)$,$(0,\ y)$(単位は$\mathrm{km}$)として,最初,$1$時間後,$2$時間後の$\mathrm{AB}$間の距離の$2$乗を表す関係式を$x,\ y,\ u,\ v$を用いて表せ.
(2)$3$時間後の両物体間の距離を$Z$とし,$Z^2$を表す関係式を$x,\ y,\ u,\ v$を用いて表せ.
(3)$3$時間後の両物体間の距離を求めよ.
(4)両物体が平面上で衝突しないことを示せ.
スポンサーリンク

「単位」とは・・・

 まだこのタグの説明は執筆されていません。