タグ「単位行列」の検索結果

6ページ目:全86問中51問~60問を表示)
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
大阪教育大学 国立 大阪教育大学 2012年 第4問
$A$を実数を成分とする行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
とし,任意の実数$x$に対して,行列$(xE-A)$を考える.ただし,$E$は$2 \times 2$の単位行列とする.相異なる実数$\alpha,\ \beta$に対して,行列$(\alpha E-A)$,$(\beta E-A)$は逆行列を持たないとき,次の問に答えよ.

(1)$\alpha+\beta=a+d,\ \alpha\beta=ad-bc$であることを示せ.また,$x \neq \alpha,\ x \neq \beta$のとき,$(xE-A)$は逆行列を持つことを示せ.
(2)$x \neq \alpha,\ x \neq \beta$のとき,$(xE-A)$の逆行列の$(i,\ j)$成分を
\[ a_{ij}(x),\quad (i=1,\ 2 \;;\; j=1,\ 2) \]
と表し,
\[ b_{ij}=\lim_{x \to \alpha}x^2(x-\alpha)a_{ij}(x)+\lim_{x \to \beta}x^2(x-\beta)a_{ij}(x) \]
とする.このとき,行列$\left( \begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array} \right)$を$A$を用いて表せ.
山形大学 国立 山形大学 2012年 第4問
2次正方行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{1+3 \sqrt{3}}{2} & -\sqrt{3} \\
\displaystyle\frac{5 \sqrt{3}}{2} & \displaystyle\frac{1-3 \sqrt{3}}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
1 & 1 \\
2 & 1
\end{array} \right) \]
について,次の問に答えよ.

(1)$A,\ B$は逆行列をもつことを示し,$A^{-1},\ B^{-1}$を求めよ.
(2)$B^{-1}A^{-1}B,\ (B^{-1}A^{-1}B)^3$を求めよ.
(3)$A^7BX=B$をみたす2次正方行列$X$を求めよ.
(4)(3)の行列$X$について
\[ E+X^5+X^{10}+X^{15}+X^{20}+X^{25}=O \]
が成り立つことを示せ.ただし$E$は2次の単位行列,$O$は零行列とする.
電気通信大学 国立 電気通信大学 2012年 第4問
次の条件をみたす2次正方行列$A,\ B$を考える.
\[ AB=-E,\quad A-B=E \quad (E \text{は単位行列}) \]
このとき,以下の問いに答えよ.

(1)$A^2-A$を求めよ.
(2)$A^3$を求めよ.
(3)$A^n=E$となる最小の正の整数$n$を求めよ.
(4)$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$とするとき,$a+d,\ ad-bc$の値をそれぞれ求めよ.ただし,$a,\ b,\ c,\ d$は実数とする.
(5)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
3 \\
1
\end{array} \right)$となるとき,$A$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2012年 第1問
座標平面上の点を,原点のまわりに角$\theta$だけ回転移動させる一次変換を表す$2$行$2$列の行列を$A$とする.以下の問いに答えよ.

(1)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって変換された点を点$\mathrm{P}_1$とする.$2$点$\mathrm{P}_0$,$\mathrm{P}_1$の間の長さを求めよ.
(2)$A^n=E$となる条件を示せ.ただし,$n$は$2$以上の整数,$0 \leqq \theta \leqq \pi$,$E$は単位行列とする.
(3)座標平面上の点$\mathrm{P}_0(a,\ b)$が$A$によって$l$回変換された点を点$\mathrm{P}_l$とする.点$\mathrm{P}_0$が$A$によって$n$回変換されると,原点の周りを$1$周して元の点$\mathrm{P}_0$に戻るとする.$n$個の点$\mathrm{P}_0$,$\mathrm{P}_1$,$\cdots$,$\mathrm{P}_{n-1}$で囲まれた$n$角形の面積$S_n$を求めよ.また,$\displaystyle \lim_{x \to 0}\frac{\sin x}{x}=1$を用いて,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)座標平面上の点を,原点からの方向を変えずに距離を$k$倍する一次変換を表す$2$行$2$列の行列を$B$とする.座標平面上の点$\mathrm{Q}_{i-1}$が一次変換$AB$によって点$\mathrm{Q}_i$に移るとする.点$\mathrm{Q}_0$を$(c_0,\ d_0)$とするとき,$2$点$\mathrm{Q}_{i-1}$,$\mathrm{Q}_i$の間の長さ$m_i$を$k,\ \theta,\ c_0,\ d_0$を用いて表せ.
愛媛大学 国立 愛媛大学 2012年 第3問
行列$A=\left( \begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array} \right)$に対して
\[ X=-\frac{1}{5}(A-2E),\quad Y=\frac{1}{5}(A+3E) \]
とおく.ただし,$E$は$2$次の単位行列とする.

(1)$XY,\ YX,\ X^2,\ Y^2$を計算せよ.
(2)$A=aX+bY$を満たす実数$a,\ b$を求めよ.
(3)自然数$n$に対して$A^n$を求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
行列$A=\left( \begin{array}{cc}
-2 & 2 \\
2 & 1
\end{array} \right)$に対して
\[ X=-\frac{1}{5}(A-2E),\quad Y=\frac{1}{5}(A+3E) \]
とおく.ただし,$E$は$2$次の単位行列とする.

(1)$XY,\ YX,\ X^2,\ Y^2$を計算せよ.
(2)$A=aX+bY$を満たす実数$a,\ b$を求めよ.
(3)自然数$n$に対して$A^n$を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)実数$\theta$に対し,$\mathrm{O}(0,\ 0,\ 0)$を原点とする座標をもつ空間において,$3$点
\[ \mathrm{P}(\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}(0,\ \cos \theta,\ \sin \theta),\quad \mathrm{R}(0,\ \cos 2\theta,\ \sin 2\theta) \]
を考える.

(i) $\theta$が$-\pi \leqq \theta<\pi$の範囲を動くとき,$\mathrm{PQ}^2$の最大値は$[ア]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[イ]}{[ウ]} \pi$と$\displaystyle \frac{[エ]}{[オ]} \pi$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OR}}$のなす角を$\alpha$とする.$\theta$が$\displaystyle \frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{[カ]}{[キ]}$であり,最大値を与える$\theta$の値は$\displaystyle \frac{[ク]}{[ケ]} \pi$である.$\theta$が$\displaystyle -\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$\displaystyle \frac{\sqrt{[コ]}}{[サ]}$である.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,$\cos \alpha$の最大値は$[シ]$であり,最大値を与える$\theta$の値は$\displaystyle -\frac{[ス]}{[セ]} \pi$である.

(2)零行列でない$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が,等式$A^2=4A$を満たしているとする.

(i) $bc=0$のとき,$a+d$の値は$[ソ]$または$[タ]$である.また,$bc \neq 0$のとき,$a+d=[チ]$,$ad-bc=[ツ]$となる.特に,$b=c>0$とすると,
\[ A=\left( \begin{array}{cc}
a & \sqrt{([テ]-[ト]a)a} \\
\sqrt{([ナ]-[ニ]a)a} & [ヌ]-[ネ]a
\end{array} \right) \]
となる.
(ii) 自然数$n$に対し,
\[ \sum_{k=1}^n \comb{n}{k} 4^k 3^{n-k}=[ノ]^n-[ハ]^n \]
であるから,
\[ (A+3E)^n=\frac{[ヒ]}{[フ]} ([ヘ]^n-[ホ]^n)A+[マ]^n E \]
となる.ここで,$E$は$2$次の単位行列を表す.
首都大学東京 公立 首都大学東京 2012年 第3問
$A$は$2$次正方行列とし,$E$,$O$はそれぞれ$A$と同じ型の単位行列,零行列とする.$A$は$kE$($k$は実数)の形でなく,$A^2-3A+2E=O$を満たす.以下の問いに答えなさい.ただし,$n$は自然数とする.

(1)$A^3=aA+bE$を満たす実数$a,\ b$を求めなさい.
(2)$A^n=a_nA+b_nE$を満たす実数$a_n,\ b_n$を求めなさい.
(3)$A^n$の逆行列が$xA+yE \ (x,\ y\text{は実数})$と表せるとき,$x,\ y$を求めなさい.
高知工科大学 公立 高知工科大学 2012年 第1問
次の各問に答えよ.

(1)放物線$y=x^2-ax+3$の頂点が直線$y=3x+5$上にあるとき,定数$a$の値を求めよ.
(2)$\displaystyle \log_9\sqrt{2}+\frac{1}{2}\log_9 \frac{1}{3}-\frac{3}{2}\log_9 \sqrt[3]6$を簡単にせよ.
(3)曲線$y=\sqrt{x-1}$上の点$(2,\ 1)$における接線を$\ell$とする.この曲線と$x$軸および接線$\ell$で囲まれた部分の面積$S$を求めよ.
(4)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が$A^2-4A+3E=O$を満たすとき,$a+d$の値を求めよ.ただし,$O$は零行列,$E$は単位行列である.
スポンサーリンク

「単位行列」とは・・・

 まだこのタグの説明は執筆されていません。