タグ「単位行列」の検索結果

3ページ目:全86問中21問~30問を表示)
九州大学 国立 九州大学 2013年 第5問
実数$x,\ y,\ t$に対して,行列
\[ A=\left( \begin{array}{cc}
x & y \\
-t-x & -x
\end{array} \right),\quad B=\left( \begin{array}{rr}
5 & 4 \\
-6 & -5
\end{array} \right) \]
を考える.$(AB)^2$が対角行列,すなわち$\left( \begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array} \right)$の形の行列であるとする.

(1)命題「$3x-3y-2t \neq 0 \ \Longrightarrow \ A=tB$」を証明せよ.
以下(2),(3),(4)では,さらに$A^2 \neq E$かつ$A^4=E$であるとする.ただし,$E$は単位行列を表す.
(2)$3x-3y-2t=0$を示せ.
(3)$x$と$y$をそれぞれ$t$の式で表せ.
(4)$x,\ y,\ t$が整数のとき,行列$A$を求めよ.
東京工業大学 国立 東京工業大学 2013年 第2問
$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$\Delta (A)=ad-bc,\ t(A)=a+d$と定める.

(1)$2$次の正方行列$A,\ B$に対して,$\Delta(AB)=\Delta(A) \Delta(B)$が成り立つことを示せ.
(2)$A$の成分がすべて実数で,$A^5=E$が成り立つとき,$x=\Delta(A)$と$y=t(A)$の値を求めよ.ただし,$E$は$2$次の単位行列とする.
静岡大学 国立 静岡大学 2013年 第4問
$n$を自然数とする.$\alpha$を実数とし,$A=\left( \begin{array}{cc}
\alpha+1 & 1 \\
-1 & \alpha-1
\end{array} \right)$とする.このとき,次の問いに答えよ.

(1)$(A-\alpha E)^2=O$であることを示せ.ただし,$E$は$2$次単位行列,$O$は$2$次零行列とする.
(2)$A^n$を求めよ.
(3)連立$1$次方程式$A^n \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$の解$x,\ y$をすべて求めよ.
徳島大学 国立 徳島大学 2013年 第3問
実数$a,\ b$は$ab+\sqrt{(2-a^2)(2-b^2)}=0$を満たす.
\[ A=\left( \begin{array}{cc}
a & b \\
\sqrt{2-a^2} & \sqrt{2-b^2}
\end{array} \right) ,\quad B=\left( \begin{array}{cc}
a & \sqrt{2-a^2} \\
b & \sqrt{2-b^2}
\end{array} \right) \]
とする.

(1)$a^2+b^2$の値を求めよ.
(2)$2 \times 1$行列$X=\left( \begin{array}{c}
s \\
t
\end{array} \right)$に対して,$|X|=\sqrt{s^2+t^2}$と定める.$P=\left( \begin{array}{c}
x \\
y
\end{array} \right)$に対して,$|BP|=\sqrt{2} |P|$が成り立つことを示せ.
(3)$AB$を求めよ.
(4)$E$を$2$次の単位行列とする.$5(A^{-1}+B^{-1})=E$が成り立つとき,$A$を求めよ.
富山大学 国立 富山大学 2013年 第3問
実数を成分とする行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は,$A^3-3A+2E=O$,$A \neq -2E$かつ$a+d \neq 2$を満たすとする.ただし,$E$は単位行列$\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$,$O$は零行列$\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right)$を表すとする.このとき,次の問いに答えよ.

(1)$A$は単位行列$E$の実数倍ではないことを示せ.
(2)$a+d,\ ad-bc$の値を求めよ.
(3)$A$の逆行列を$A^{-1}$として,自然数$n$に対して,実数$p_n,\ q_n$を等式$(A^{-1})^n=p_nA+q_nE$で定める.さらに,$r_n=q_n-2p_n$とするとき,数列$\{r_n\}$の一般項を求めよ.
(4)数列$\{q_n\}$の一般項を求めよ.
岩手大学 国立 岩手大学 2013年 第1問
次の問いに答えよ.

(1)$x>0$のとき,$\displaystyle e^{2x}>\frac{x^2}{2}$となることを示せ.
(2)$A=\left( \begin{array}{cc}
0 & p \\
1 & 0
\end{array} \right)$($p$は実数)について,$A^4=E$かつ$A^2 \neq E$のとき,$p$の値を求めよ.ただし,$E$は単位行列とする.
(3)関数$f(x)=ax^r+b \ (x>0)$において,$f(2)=27$,$f(4)=87$,$f(8)=387$を満たすとき,$a,\ b$の値を求めよ.
(4)$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(2,\ 2 \sqrt{3})$,$\mathrm{B}(1,\ 0)$をとる.点$\mathrm{A}$を通り,直線$\mathrm{OA}$に直交する直線上に$\mathrm{OA}=\mathrm{AC}$となる点$\mathrm{C}$をとる.$\angle \mathrm{COB}=\theta$とするとき,$\tan \theta$の値を求めよ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
香川大学 国立 香川大学 2013年 第2問
$0<\theta \leqq \pi$に対して$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおく.$n$を$2$以上の自然数とするとき,次の問に答えよ.

(1)$A^n$を求めよ.
(2)$S_n=E+A+A^2+\cdots +A^{n-1}$とおくとき,$S_n=P(A^n-E)$となる行列$P$を求めよ.ここで,$E$は単位行列である.
(3)$\displaystyle \theta=\frac{2\pi}{n}$のとき,$1+\cos \theta+\cos 2\theta+\cdots +\cos n\theta$を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
$\displaystyle \theta=\frac{2\pi}{3}$とし,$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とおく.また,$2$次の単位行列を$E$で表す.以下の各問に答えよ.

(1)$A^3=E$を示せ.
(2)$r$を実数とする.自然数$k$に対して,行列$(rA)^{3k}+(rA)^{3k+1}+(rA)^{3k+2}$の$(1,\ 1)$成分を$a_k$とおくとき,$a_k$を$r$を用いて表せ.
(3)自然数$N$に対して$\displaystyle x_N=2 \sum_{k=0}^N a_k$とする.ただし$a_k$は,$k \geqq 1$のときは(2)で定めたものとし,$k=0$のときは$\displaystyle a_0=1-\frac{1}{2}r-\frac{1}{2}r^2$とおく.$-1<r<1$のとき,$\displaystyle f(r)=\lim_{N \to \infty}x_N$を求めよ.
(4)$r$が$-1<r<1$の範囲を動くとき,(3)で定めた$f(r)$のとりうる値の範囲を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第5問
$2$次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$に対して,$\Delta (A)=ad-bc$とおく.たとえば単位行列$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対しては$\Delta (E)=1 \times 1-0 \times 0=1$となる.また$K=\left( \begin{array}{cc}
2 & 3 \\
5 & 7
\end{array} \right)$に対しては$\Delta (K)=2 \times 7-3 \times 5=-1$となる.次の各問いに答えよ.

(1)$P=\left( \begin{array}{cc}
0 & 1 \\
2 & 3
\end{array} \right),\ Q=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$に対して$R=PQ$とおく.$\Delta (P),\ \Delta (Q),\ \Delta (R)$を計算し,$\Delta (R)=\Delta (P) \Delta (Q)$が成り立つことを確かめよ.
(2)すべての$2$次の正方行列$A,\ B$に対して,$C=AB$とおくと$\Delta (C)=\Delta (A) \Delta (B)$が成り立つことを示せ.
(3)$X^2=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right)$となる$2$次の正方行列$X$ですべての成分が実数であるようなものは存在しないことを示せ.
(4)$2$次の正方行列$A$に逆行列$B$が存在したとする.$A$と$B$の成分がすべて整数ならば,$\Delta (A)$は$1$か$-1$のどちらかである.このことを示せ.
岐阜大学 国立 岐阜大学 2013年 第5問
$a,\ b$を$\displaystyle a^2+\frac{b^2}{6}=1$を満たす正の実数とする.行列$A=\left( \begin{array}{cc}
2 \sqrt{2}a & b \\
-b & -\sqrt{2}a
\end{array} \right)$に対して,以下の問に答えよ.

(1)実数$p,\ q$が$A^2=pA+qE$を満たすとき,$p,\ q$を$a$を用いて表せ.ただし,$E$は$2$次の単位行列とする.
(2)$\displaystyle a=\frac{1}{\sqrt{2}}$のとき,$\displaystyle \sum_{k=1}^{100}(-1)^kA^k$を求めよ.
(3)$\displaystyle a=\frac{1}{\sqrt{2}}$とし,$m$を正の整数とする.$x$と$y$についての方程式$A^m \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
-x \\
0
\end{array} \right)$が$x=y=0$以外の解をもつとき,$m$の満たす条件を求めよ.
スポンサーリンク

「単位行列」とは・・・

 まだこのタグの説明は執筆されていません。