タグ「半径」の検索結果

69ページ目:全712問中681問~690問を表示)
甲南大学 私立 甲南大学 2010年 第2問
$3$つの直線$y=x-1$,$y=-x+7$,$y=-2x+8$について,以下の問いに答えよ.

(1)この$3$つの直線で囲まれた三角形の面積を求めよ.
(2)(1)の三角形に内接する円の半径を求めよ.
(3)(2)の内接円の方程式を求めよ.
甲南大学 私立 甲南大学 2010年 第2問
$3$つの直線$y=x-1$,$y=-x+7$,$y=-2x+8$について,以下の問いに答えよ.

(1)この$3$つの直線で囲まれた三角形の面積を求めよ.
(2)(1)の三角形に内接する円の半径を求めよ.
(3)(2)の内接円の方程式を求めよ.
龍谷大学 私立 龍谷大学 2010年 第2問
原点を中心とし半径$1$の円を$C$とする.また,点$\mathrm{A}(-1,\ 0)$を通り傾き$\displaystyle \frac{1}{2}$の直線を$\ell$とする.$C$と$\ell$の交点のうち,点$\mathrm{A}$でない方を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)点$\mathrm{P}$を通り直線$\ell$と$45^\circ$の角度で交わる$2$本の直線の方程式を求めなさい.さらに,この$2$本の直線を図示しなさい.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{\sqrt{7}+1}{\sqrt{7}-2}$の整数部分を$a$,小数部分を$b$とするとき,$(a,\ b)=[ア]$であり,$\displaystyle \frac{1}{a}+\frac{1}{b}$の小数部分の値は$[イ]$である.
(2)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=10$,$\mathrm{BC}=12$,$\mathrm{CA}=8$とし,$\angle \mathrm{A}$の二等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}=[ウ]$である.また,$\mathrm{AD}$を軸とし,$\mathrm{AC}$を$\mathrm{AB}$に重ねるように$\triangle \mathrm{ADC}$を折り返すとき,$\mathrm{C}$が$\mathrm{AB}$上に重なる点を$\mathrm{E}$とする.このとき,$\sin \angle \mathrm{BDE}=[エ]$である.
(3)$x>0,\ y>0$とする.$\displaystyle \left( x+\frac{5}{y} \right) \left( y+\frac{2}{x} \right)$は,$xy=[オ]$のとき最小値$[カ]$をとる.
(4)展開図が半径$r$の円と周の長さが$k$の扇形からなる円錐を考える.このとき円錐の高さは$[キ]$である.また,$k$を一定とすると,$r=[ク]$のとき円錐の表面積が最大になる.ただし,円周率を$\pi$とする.
(5)実数$x,\ y,\ z (xyz \neq 0)$について等式$3^x=2^y=\sqrt{6^{3z}}$が成立しているとき,$x$を$z$で表すと$[ケ]$であり,$\displaystyle \frac{1}{x}+\frac{1}{y}$を対数を用いないで表すと$[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第4問
半径$r$の球に内接する直円錐の体積は,その円錐の底面の半径が$[ ]$のときに最大値をとり,その値は球の体積の$[ ]$倍に等しい.
北星学園大学 私立 北星学園大学 2010年 第2問
底面の半径が$a$,高さが$2a$の円柱にちょうど入る球または円錐がある.以下の問に答えよ.

(1)この円柱,球,円錐の体積の比を求めよ.
(2)この円錐と同じ表面積を持つ正四面体の$1$辺の長さを求めよ.
北海道科学大学 私立 北海道科学大学 2010年 第9問
半径$1$の円において,直径$\mathrm{AB}$と円周上の点$\mathrm{C}$,$\mathrm{D}$で,四角形$\mathrm{ABCD}$を作る.$\angle \mathrm{A}=75^\circ$,$\angle \mathrm{B}=60^\circ$のとき,$\angle \mathrm{DAC}=[ ]$である.また,$\mathrm{CD}$の長さは$[ ]$である.
(図は省略)
北海道科学大学 私立 北海道科学大学 2010年 第22問
$a$は実数の定数とする.円$x^2+y^2-ax-2y=0$上の点$(4,\ 2)$における接線を$\ell$とする.このとき,次の各問に答えよ.

(1)$a$の値を求めよ.
(2)この円の中心の座標と半径を求めよ.
(3)接線$\ell$の傾きを求めよ.
(4)接線$\ell$の方程式を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第2問
円$\mathrm{O}_1,\ \mathrm{O}_2,\ \mathrm{O}_3,\ \cdots$があり,すべての$n=1,\ 2,\ 3,\ \cdots$に対して

(i) $\mathrm{O}_n$の中心の座標は$(x_n,\ 0)$であり,$x_n>x_{n+1}$である.
(ii) $\mathrm{O}_n$と$\mathrm{O}_{n+1}$は外接している.
(iii) $\mathrm{O}_n$は原点を端点とする$2$本の半直線$\displaystyle y=\pm \frac{1}{\sqrt{3}}x (x \geqq 0)$に接しているとする.

このとき

(1)$\mathrm{O}_n$の半径$r_n$を$x_n$で表すと$r_n=[ ]$である.
(2)$x_n$を$x_1$と$n$で表すと$x_n=[ ]$である.
(3)$x_1=4$とする.$\mathrm{O}_1$から$\mathrm{O}_m$までの面積の和を$S_m$とすると$\displaystyle \lim_{m \to \infty}S_m=[ ]$である.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。