タグ「半径」の検索結果

68ページ目:全712問中671問~680問を表示)
早稲田大学 私立 早稲田大学 2010年 第2問
関数$f(x)$は次の等式を満たす.
\[ f(x) = \int_{-1}^1 xf(t)\, dt + 1 \]
次の問に答えよ.

(1)関数$f(x)$を求めよ.
(2)$y=f(x)$のグラフと,点P$(0,\ p)$を中心とする半径$1$の円が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$p$が取り得る値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{ABP}$の面積$S$を$p$を用いて表せ.
(4)(2)において,$\angle \mathrm{APB} = \displaystyle\frac{2\pi}{3}$となるような$p$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
座標平面上で,C$_1$,C$_2$,C$_3$を,それぞれ,中心が$(0,\ 0),\ (3,\ 0),\ (5,\ 0)$,半径が$2,\ 1,\ 1$である円周とする.点Pは点$(2,\ 0)$を出発点とし,円周C$_1$上を反時計回りに等速で$2a$秒で一周する.点Qは点$(4,\ 0)$を出発点とし,先ず円周C$_2$上を反時計回りに等速で$a$秒で一周し,続いて円周C$_3$上を時計回りに等速で$a$秒で一周する.\\
\quad 点P,Qが同時に出発するとき,線分PQの長さの最大値と最小値を求めよ.
\quad ただし,$a$は正の定数である.
金沢工業大学 私立 金沢工業大学 2010年 第2問
半径が$1 \; \mathrm{m}$の円形のブリキ板から,中心角が$90^\circ$の扇形の部分を切り落して残りの部分で下図のような円錐形の容器を作る.
(図は省略)

(1)この容器の底面の半径は$\displaystyle r=\frac{[ク]}{[ケ]} \; \mathrm{m}$,深さは$\displaystyle h=\frac{\sqrt{[コ]}}{[サ]} \; \mathrm{m}$である.

(2)この容器に,その深さの$\displaystyle \frac{2}{3}$のところまで水を入れるとき,その水の体積は$\displaystyle \frac{\sqrt{[シ]}}{[スセ]} \pi \; \mathrm{m}^3$である.
早稲田大学 私立 早稲田大学 2010年 第2問
$2$平面$\pi_1$,$\pi_2$がある.$\pi_1$は$3$点$(1,\ 1,\ 7)$,$(2,\ 1,\ 5)$,$(1,\ 2,\ 5)$を通り,$\pi_2$は$3$点$(2,\ 1,\ 5)$,$(2,\ 3,\ 4)$,$(6,\ 0,\ 5)$を通る.

(1)平面$\pi_2$上の点$(x,\ y,\ z)$は関係式$x+[ソ]y+[タ]z-[$4$][チ]=0$を満たす.
(2)$2$平面$\pi_1$,$\pi_2$の交線は点$\mathrm{A}(-2,\ [ツ],\ [テ])$を通る.
(3)$2$平面の交線に垂直で平面$\pi_1$に平行なベクトル$\overrightarrow{a}$は$([ト],\ [ナ],\ -2)$で,$2$平面の交線に垂直で平面$\pi_2$に平行なベクトル$\overrightarrow{b}$は$([$1$][ニ],\ 10,\ -[ヌ])$である.
(4)$\mathrm{O}$を原点とすると,$2$平面$\pi_1$,$\pi_2$に接する半径$15$の球面の中心$\mathrm{P}$が
\[ \overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OA}} + s\overrightarrow{a} + t\overrightarrow{b} \quad (s>0,\ t>0) \]
を満たすとき,$\mathrm{P}$の座標は$([$2$][ネ],\ [$1$][ノ],\ -22)$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第5問
半径1の円Oの中心Oを通る直線上に$\text{OA}=2$となるように点Aを定める.点Aを通り,円Oと2点B,Cで交わるような直線を引き,$\text{AB}=\text{BC}$となるようにしたい.2直線のなす角$\theta = \angle \text{OAB} \ (0^\circ <\theta<30^\circ)$をどのように定めればよいか.次の手順で検討せよ.

(1)線分BCの中点をMとして,線分AMの長さを$\cos \theta$を用いて表せ.
(2)同様に,線分BMの長さを$\cos \theta$を用いて表せ.
(3)$\text{AB}=\text{BC}$のとき$\text{AM}= 3\text{BM}$である.これを利用して$\cos \theta$の値を求めよ.
関西大学 私立 関西大学 2010年 第3問
座標平面上に$(3,\ 2)$を中心とし,半径$1$の円$\mathrm{O}_1$がある.円$\mathrm{O}_1$に外接し,かつ$x$軸に接する円$\mathrm{O}$の円周上のすべての点が$x \geqq 0$,$y \geqq 0$を満たす領域にあるとする.また,円$\mathrm{O}$の中心の座標を$(p,\ q)$とする.次の問いに答えよ.

(1)$q$を$p$で表せ.
(2)$x$軸,$y$軸に接し,円$\mathrm{O}_1$に外接する円の半径を求めよ.
(3)$p$のとりうる値の範囲を求めよ.
(4)$q$のとりうる値の範囲を求めよ.
北海学園大学 私立 北海学園大学 2010年 第1問
次の各問いに答えよ.

(1)放物線$C:y=x^2+ax+b$は$2$点$(1,\ 0)$,$(2,\ -3)$を通る.$a$と$b$の値を求め,$C$の頂点の座標,及び$C$と$x$軸との共有点の座標を求めよ.
(2)不等式$2 \cos^2 \theta+3 \cos \theta-2 \leqq 0$をみたす$\theta$の値の範囲を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(3)三角形$\mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=6$,$\mathrm{CA}=5$のとき,$\cos \angle \mathrm{ABC}$の値,三角形$\mathrm{ABC}$の面積,外接円の半径をそれぞれ求めよ.
北海学園大学 私立 北海学園大学 2010年 第1問
次の各問いに答えよ.

(1)放物線$C:y=x^2+ax+b$は$2$点$(1,\ 0)$,$(2,\ -3)$を通る.$a$と$b$の値を求め,$C$の頂点の座標,及び$C$と$x$軸との共有点の座標を求めよ.
(2)不等式$2 \cos^2 \theta+3 \cos \theta-2 \leqq 0$をみたす$\theta$の値の範囲を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(3)三角形$\mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=6$,$\mathrm{CA}=5$のとき,$\cos \angle \mathrm{ABC}$の値,三角形$\mathrm{ABC}$の面積,外接円の半径をそれぞれ求めよ.
北海学園大学 私立 北海学園大学 2010年 第5問
三角形$\mathrm{ABC}$において$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{a}$,$\mathrm{CA}=2$,$\angle \mathrm{BAC}=\theta$とする.次の問いに答えよ.

(1)$\cos \theta$を$a$の式で表せ.また,$a$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$の面積が最大となるような$a$の値を求めよ.また,このときの外接円の半径$R$と内接円の半径$r$をそれぞれ求めよ.
(3)上の$(2)$が成り立つとき,三角形$\mathrm{ABC}$の外接円の弧$\mathrm{CA}$上の点$\mathrm{D}$によってできる四角形$\mathrm{ABCD}$の面積の最大値を求めよ.ただし,弧$\mathrm{CA}$上には点$\mathrm{B}$がないものとする.
自治医科大学 私立 自治医科大学 2010年 第22問
表面積が$150 \pi$の円柱のうち,体積が最大となる円柱の底面の半径を$r$とするとき,$r$の値を求めよ.ただし,円柱の表面積は,$2$つの底面および側面の面積の総和である.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。