タグ「半径」の検索結果

64ページ目:全712問中631問~640問を表示)
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
信州大学 国立 信州大学 2010年 第4問
$0 < p < 4$とし,放物線$\displaystyle y =\frac{1}{4}x^2$上の点$\displaystyle \left(p,\ \frac{1}{4}p^2 \right)$を中心にして,半径が$\displaystyle \frac{1}{4}p^2$の円$C$をかく.次に,$m > 0$とし,直線$y = mx$が円$C$に接しているとする.

(1)$m$を$p$の式で表せ.
(2)放物線$\displaystyle y =\frac{1}{4}x^2$と直線$y = mx$によって囲まれる図形の面積が$\displaystyle \frac{1}{3}$のとき,$m$と$p$の値を求めよ.
東京大学 国立 東京大学 2010年 第5問
$C$を半径$1$の円周とし,$\mathrm{A}$を$C$上の$1$点とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{A}$を時刻$t=0$に出発し,$C$上を各々一定の速さで,$\mathrm{P}$,$\mathrm{Q}$は反時計回りに,$\mathrm{R}$は時計回りに,時刻$t=2\pi$まで動く.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の速さは,それぞれ$m$,$1$,$2$であるとする.(したがって,$\mathrm{Q}$は$C$をちょうど一周する.)ただし,$m$は$1\leqq m \leqq 10$をみたす整数である.$\triangle \mathrm{PQR}$が$\mathrm{PR}$を斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
千葉大学 国立 千葉大学 2010年 第3問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線の長さは1,頂点$\mathrm{B}$から直線$\mathrm{CA}$に下ろした垂線の長さは$\sqrt{2}$,頂点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線の長さは2である.このとき,$\triangle \mathrm{ABC}$の面積と,内接円の半径,および,外接円の半径を求めよ.
東京大学 国立 東京大学 2010年 第4問
$C$を半径1の円周とし,Aを$C$上の1点とする.3点P,Q,RがAを時刻$t=0$に出発し,$C$上を各々一定の速さで,P,Qは反時計回りに,Rは時計回りに,時刻$t=2\pi$まで動く.P,Q,Rの速さは,それぞれ$m$,1,2であるとする.(したがって,Qは$C$をちょうど一周する.)ただし,$m$は$1\leqq m\leqq10$をみたす整数である.$\triangle$PQRがPRを斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
岩手大学 国立 岩手大学 2010年 第2問
鋭角三角形$\triangle$ABCにおいて,頂点Aを通り直線BCに点Bで接する円$C_1$の半径を$p$,頂点Aを通り直線BCに点Cで接する円$C_2$の半径を$q$とする.このとき,$\triangle$ABCの外接円の半径$R$を$p,\ q$で表せ.
岩手大学 国立 岩手大学 2010年 第2問
鋭角三角形$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$を通り直線$\mathrm{BC}$に点$\mathrm{B}$で接する円$C_1$の半径を$p$,頂点$\mathrm{A}$を通り直線$\mathrm{BC}$に点$\mathrm{C}$で接する円$C_2$の半径を$q$とする.このとき,$\triangle \mathrm{ABC}$の外接円の半径$R$を$p,\ q$で表せ.
琉球大学 国立 琉球大学 2010年 第2問
3点O$(0,\ 0,\ 0)$,A$(3,\ 0,\ 0)$,B$(1,\ 2,\ 1)$がある.

(1)$z$軸上の点C$(0,\ 0,\ m)$から直線AB上の点Hにおろした垂線をCHとする.このとき,点Hが線分AB上にあるような$m$の値の範囲を求めよ.
(2)点Hが線分AB上にあるとき,垂線CHの長さの最大値,最小値とそのときのHの座標を求めよ.
(3)三角形OABに外接する円の中心Pの座標とその半径$r$を求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。