タグ「半径」の検索結果

62ページ目:全712問中611問~620問を表示)
大阪市立大学 公立 大阪市立大学 2011年 第1問
座標平面において,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とし,点$\mathrm{P}(p,\ q)$は$p^2 +q^2 > 1$をみたすものとする.$\mathrm{P}$から$C$へ接線をひき,その接点を$\mathrm{T}(s,\ t)$とする.$\mathrm{P}$を中心とし$\mathrm{T}$を通る円を$D$として,$D$は点$\mathrm{A}(a,\ 0)$を通るものとする.次の問いに答えよ.

(1)$(a-p)^2 = p^2-1$であることを示せ.
(2)$0<a<1$のとき$p>1$であることを示し,$a$を$p$を用いて表せ.
高崎経済大学 公立 高崎経済大学 2011年 第1問
以下の各問いに答えよ.

(1)次の方程式を解け.
\[ |x+3| = 2x \]
(2)$a$を素数とする.$2$次方程式$x^2 -ax+66 = 0$の$2$つの解のうち,ただ$1$つのみが素数であるとき,$a$の値を求めよ.
(3)$\triangle \mathrm{ABC}$において,$A = 60^\circ$,外接円の半径$R$が$7$のとき,$\mathrm{BC}$の長さを求めよ.
(4)$\log_{10} 2 = 0.3010,\ \log_{10} 3 = 0.4771$とする.$12^{20}$は何桁の整数か.
(5)$15$本のくじの中に当たりくじが$3$本ある.この中から$2$本のくじを同時に引くとき,少なくとも$1$本が当たる確率を求めよ.
(6)次の$3$点が同一直線上にあるように,$m,\ n$の値を定めよ.
\[ \mathrm{A}(2,\ -1,\ -2),\ \mathrm{B}(4,\ 2,\ 5),\ \mathrm{C}(m,\ -4,\ n) \]
(7)次の定積分を求めよ.
\[ \int_{-2}^2 |x-1|(x-1) \, dx \]
(8)四角形$\mathrm{ABCD}$において,$\mathrm{AB} = 5,\ \mathrm{BC} = 3,\ \mathrm{CD} = 7,\ B = 120^\circ,\ D = 60^\circ$とするとき,四角形$\mathrm{ABCD}$の面積$S$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
$r$を正の定数とし,$n$を$3$以上の自然数とする.$C$が半径が$r$の円とする.円$C$に内接する正$n$角形の$1$辺の長さを$s_n$,円$C$に外接する正$n$角形の$1$辺の長さを$t_n$とする.ただし,正$n$角形が円$C$に外接するとは,円$C$が正$n$角形のすべての辺に接することである.

(1)$s_n$を$r$と$n$を用いて表せ.
(2)$\displaystyle \frac{s_n}{t_n}$を$n$を用いて表せ.
(3)$s_5=2$であるとき,円$C$に内接する正$5$角形の面積を,小数第$3$位を四捨五入して小数第$2$位まで求めよ.ただし,$\tan 36^\circ=0.727$としてよい.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第4問
座標平面において,原点を通り傾きが$\tan 2\theta$の直線を$\ell$で表す.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとする.中心が第1象限に属し,直線$\ell$と$x$軸に接する半径1の円$C$を考える.さらに,円$C$と直線$\ell$および$x$軸に接し,中心が第1象限に属する2つの円のうち,面積が大きいものを$C^\prime$で表す.以下の問いに答えよ.

(1)円$C$の方程式を求めよ.
(2)円$C^\prime$の半径を,$\theta$の関数として表せ.
(3)円$C^\prime$の円周の長さが,円$C$の円周の長さの3倍になるように$\theta$の値を定めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
半径$1$の円が直線上を一定の速さ$a (a>0)$で滑らないように回転しながら進んでいる.時刻$0$において直線と接している円周上の点を$\mathrm{P}$,時刻$0$から$t$までに円が回転した角度を$\theta$とする.次の問いに答えよ.

(1)時刻$t$における$\mathrm{P}$の速度ベクトルの大きさ$|\overrightarrow{v(t)}|$を求めよ.
(2)積分$\displaystyle \int_0^{\frac{2\pi}{a}} |\overrightarrow{v(t)}| \, dt$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
点$\mathrm{O}$を中心とする半径$r$の円の内部にある点を$\mathrm{A}$とする.この円周上の点$\mathrm{P}$について,線分$\mathrm{AP}$の垂直二等分線と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とする.点$\mathrm{P}$がこの円周上を動くとき,点$\mathrm{Q}$が描く軌跡を求めよ.
三重県立看護大学 公立 三重県立看護大学 2011年 第2問
円$x^2+y^2+lx+my+n=0$が,点$\mathrm{A}(-4,\ 3)$,点$\mathrm{B}(-1,\ 0)$,点$\mathrm{C}(2,\ 3)$の$3$点を通るとき,次の問いに答えなさい.

(1)$l,\ m,\ n$の値を求めなさい.
(2)この円の中心の座標と半径を求めなさい.
(3)この円の面積を求めなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2011年 第3問
座標平面において原点を中心とする半径$1$の円を$C_1$とし,点$(1,\ 0)$を中心とする半径$3$の円を$C_2$とする.動点$\mathrm{P}$は$C_1$上を反時計回りに$1$秒間に$2$回転の速さで等速円運動をし,動点$\mathrm{Q}$は$C_2$上を反時計回りに$1$秒間に$1$回転の速さで等速円運動をしている.時刻$t=0$のとき,$\mathrm{P}$は$(0,\ 1)$にあり,$\mathrm{Q}$は$(4,\ 0)$にあるものとする.$2$点$\mathrm{P}$,$\mathrm{Q}$間の距離の$2$乗の最大値と最小値,およびそれらをとる$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
島根県立大学 公立 島根県立大学 2011年 第5問
下図の$\triangle \mathrm{ABC}$において,$\mathrm{FE} \para \, \mathrm{BC}$,$\mathrm{AE}=\mathrm{EC}$である.また,$\mathrm{FE}$を直径とする円$O$と$\mathrm{BC}$との接点を点$\mathrm{D}$とする.$\triangle \mathrm{ABC}$の面積が$64$,$\angle \mathrm{ABC}={30}^\circ$のとき,次の問いに答えよ.
(図は省略)

(1)円$O$の半径の長さを求めよ.
(2)$\triangle \mathrm{HFE}$の面積を求めよ.
(3)線分$\mathrm{BF}$の長さを求めよ.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。