タグ「半径」の検索結果

61ページ目:全712問中601問~610問を表示)
東北医科薬科大学 私立 東北医科薬科大学 2011年 第2問
中心が$\mathrm{O}$で半径$1$の円上の点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し
\[ \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+4k \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \quad{(零ベクトル)} \]
を満たす実数$k$が存在するという.このとき,次の問に答えなさい.

(1)特に$k=0$のとき$\mathrm{AB}=[ア]$である.
以下$0<k$とする.
(2)$\angle \mathrm{AOB}=\theta$とおく.$0<\theta<\pi$とするとき,$\displaystyle k=\frac{[イ]}{[ウ]} \cos \frac{\theta}{[エ]}$が成り立つ.
(3)$F=\mathrm{AB}^2+\mathrm{BC}^2+\mathrm{CA}^2$を$k$の式で表すと
\[ F=[オカキ] k^2+[ク] k+[ケ] \]
である.
(4)$F$は$\displaystyle k=\frac{[コ]}{[サ]}$のとき最大値$[シ]$をとる.
久留米大学 私立 久留米大学 2011年 第5問
$y=|2x-1|$のグラフと$2$点で接する半径$3$の円の中心座標は$[$11$]$であり,$2$つの接点の座標は$[$12$]$と$[$13$]$である.
久留米大学 私立 久留米大学 2011年 第7問
三角形$\triangle \mathrm{ABC}$の頂点の座標が$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2,\ 3)$,$\mathrm{C}(4,\ 1)$であるとき,次の問いに答えよ.

(1)辺$\mathrm{AB}$,$\mathrm{AC}$の長さはそれぞれ,$\overline{\mathrm{AB}}=[$16$]$,$\overline{\mathrm{AC}}=[$17$]$である.
(2)三角形$\triangle \mathrm{ABC}$の面積は$[$18$]$である.
(3)角$\angle \mathrm{BAC}$の角度は$[$19$]$である.
(4)三角形$\triangle \mathrm{ABC}$に外接する円の半径は$[$20$]$である.
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
大同大学 私立 大同大学 2011年 第6問
次の問いに答えよ.

(1)$2x^2-19x+a<0$をみたす実数$x$が存在するとき,定数$a$の値の範囲は$\displaystyle a<\frac{[ ]}{[ ]}$である.$2x^2-19x+a<0$をみたす整数$x$がただ$1$つ存在するとき,その整数$x$は$[ ]$であり,定数$a$の値の範囲は$[ ] \leqq a<[ ]$である.
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{[ ]}$である.
大同大学 私立 大同大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{[ ] \sqrt{[ ]}-[ ]}$

$\displaystyle \hspace{27mm} =\frac{[ ]+[ ] \sqrt{2}+[ ] \sqrt{3}+\sqrt{6}}{[ ]}$
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{7}$である.$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,$\mathrm{AM}=[ ]$である.
(3)$10$個の製品の中に不良品が$3$個含まれている.これらから無作為に$4$個の製品を取り出すとき,含まれる不良品の個数を$X$で表す.$X=2$となる確率は$\displaystyle \frac{[ ]}{[ ]}$,$X=3$となる確率は$\displaystyle \frac{[ ]}{[ ]}$である.$X$の期待値は$\displaystyle \frac{[ ]}{[ ]}$である.
千葉工業大学 私立 千葉工業大学 2011年 第2問
次の各問に答えよ.

(1)円$C:x^2+y^2-4x+6y+8=0$の中心は$([ア],\ [イウ])$,半径は$\sqrt{[エ]}$である.直線$(m+3)x-my-6=0$が$C$と接するような定数$m$の値は$[オカ]$または$[キ]$である.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.$F=(1-4 \sin \theta) \cos 2\theta$は$t=\sin \theta$を用いて表すと,
\[ F=[ク] t^3-[ケ] t^2-[コ] t+[サ] \]
となる.$F$は$\displaystyle \theta=\frac{[シ]}{[ス]} \pi$のとき,最小値$\displaystyle \frac{[セソ]}{[タ]}$をとる.
福岡大学 私立 福岡大学 2011年 第4問
曲線$y=-\cos x (0 \leqq x \leqq \pi)$を$y$軸のまわりに$1$回転させてできる形をした容器がある.ただし,単位は$\mathrm{cm}$とする.この容器に毎秒$1 \, \mathrm{cm}^3$ずつ水を入れたとき,$t$秒後の水面の半径を$r \, \mathrm{cm}$とし,水の体積を$V \, \mathrm{cm}^3$とする.水を入れ始めてからあふれるまでの時間内で考えるとき,次の問いに答えよ.

(1)水の体積$V$を$r$の式で表せ.
(2)水を入れ始めて$t$秒後の$r$の増加する速度$\displaystyle \frac{dr}{dt}$を$r$の式で表せ.
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
首都大学東京 公立 首都大学東京 2011年 第3問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(3,\ 0)$を中心とし半径が$r_1$の円$C_1$と,点$\mathrm{B}(1,\ 0)$を中心とし半径が$r_2$の円$C_2$がある.$C_1$上に$y$座標が正である点$\mathrm{P}_1$をとり,$\angle \mathrm{OAP}_1 = \theta$とする.$C_2$上に$y$座標が負である点$\mathrm{P}_2$を,ベクトル$\overrightarrow{\mathrm{AP}_1}$と$\overrightarrow{\mathrm{BP}_2}$が平行であるようにとるとき,以下の問いに答えなさい.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$の座標を$r_1,\ r_2,\ \theta$でそれぞれ表しなさい.
(2)$r_1+r_2 < 2$とする.$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線が$C_1$と$C_2$の両方に接するとき,$\cos \theta$を求めなさい.
(3)$(2)$の条件のもとで$\triangle \mathrm{OP}_1 \mathrm{P}_2$の面積を$r_1,\ r_2$で表しなさい.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。