タグ「半径」の検索結果

57ページ目:全712問中561問~570問を表示)
長岡技術科学大学 国立 長岡技術科学大学 2011年 第2問
半径$1$の球を含む円すいの体積の最小値,およびそのときの円すいの高さと底面の半径を求めなさい.
高知大学 国立 高知大学 2011年 第2問
$n$を2以上の自然数とする.平面上に距離が1である2点O,P$_0$がある.中心がOで半径1の円周上に点P$_k \ (k=1,\ 2,\ \cdots,\ n)$を反時計回りに$\displaystyle \angle \text{P}_k \text{OP}_0=\frac{k\pi}{n}$となるようにとる.三角形P$_k$OP$_{k-1}$の面積を$T_k$と表し,$\displaystyle S_n=\sum_{k=1}^n T_k$とおく.このとき,次の問いに答えよ.

(1)$S_2$を求めよ.
(2)$S_n$を$n$で表せ.
(3)$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
(4)$e_k$を線分P$_{k-1}$P$_k$の長さとおいて,$\displaystyle E_n=\sum_{k=1}^n e_k$とする.このとき,
\[ S_n=\frac{1}{2}E_n \sin \frac{(n-1) \pi}{2n} \]
を示せ.
(5)$\displaystyle \lim_{n \to \infty}E_n$を求めよ.
長崎大学 国立 長崎大学 2011年 第2問
$3$辺の長さが$\mathrm{AB}=4,\ \mathrm{BC}=3,\ \mathrm{CA}=5$である直角三角形$\mathrm{ABC}$と,その内側にあって$2$辺$\mathrm{AB}$および$\mathrm{AC}$に接する円$\mathrm{O}$を考える.この円の半径を$r$とし,中心$\mathrm{O}$から$\mathrm{AB}$に引いた垂線と$\mathrm{AB}$との交点を$\mathrm{H}$とする.また,ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$と同じ向きで大きさが$1$のベクトルを,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$とし,$\overrightarrow{\mathrm{AH}}=t \overrightarrow{u} \ (t>0)$とする.次の問いに答えよ.

(1)直線$\mathrm{AO}$と辺$\mathrm{BC}$の交点を$\mathrm{M}$とするとき,ベクトル$\overrightarrow{\mathrm{AM}}$を$\overrightarrow{u}$と$\overrightarrow{v}$を用いて表せ.
(2)ベクトル$\overrightarrow{u},\ \overrightarrow{v}$の内積$\overrightarrow{u} \cdot \overrightarrow{v}$を求め,ベクトル$\overrightarrow{\mathrm{AO}}$と$\overrightarrow{\mathrm{HO}}$を,それぞれ$\overrightarrow{u},\ \overrightarrow{v}$および$t$を用いて表せ.また,円$\mathrm{O}$の半径$r$を$t$で表せ.
(3)円$\mathrm{O}$が辺$\mathrm{BC}$にも接するとき,その中心を$\mathrm{I}$とする.すなわち,$\mathrm{I}$は三角形$\mathrm{ABC}$の内心である.そのときの$t$の値と,内接円$\mathrm{I}$の半径を求めよ.
(4)円$\mathrm{O}$と内接円$\mathrm{I}$が共有点をもたないような$t$の範囲を求めよ.
大分大学 国立 大分大学 2011年 第2問
直線$\ell_1:y=mx+3 (m>0)$が,点$\mathrm{A}(5,\ 3)$を中心とする円$C_1$に接している.その接点を$\mathrm{P}$とする.直線$\ell_1$と$y$軸との交点を$\mathrm{Q}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線$\ell_2$と$x$軸との交点を$\mathrm{R}$とする.

(1)円$C_1$の半径$r$を$m$を用いて表しなさい.
(2)円$C_1$が$x$軸と異なる$2$点で交わるような$m$の値の範囲を求めなさい.
(3)線分$\mathrm{QR}$の中点$\mathrm{S}$の座標を求めなさい.
(4)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円$C_2$の中心と円$C_1$の中心との距離を$d$とする.$d$の最小値とそのときの$m$の値を求めなさい.
早稲田大学 私立 早稲田大学 2011年 第6問
図のように,点$\mathrm{O}$を中心とする半径$1$の円に内接する正$9$角形の頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_9$から,長さが最大となる対角線を$2$本ずつ引き,それらの交点を$\mathrm{B}_1$,$\mathrm{B}_2$,$\cdots$,$\mathrm{B}_9$とする.これらの点を$\mathrm{A}_1 \to \mathrm{B}_1 \to \mathrm{A}_2 \to \mathrm{B}_2 \to \cdots \to \mathrm{A}_9 \to \mathrm{B}_9 \to \mathrm{A}_1$の順に線分で結んでできた図形を星型$S$とよぶ.ここで,$\tan 10^\circ=a$とするとき,$\triangle \mathrm{OA}_1 \mathrm{B}_1$の辺$\mathrm{OA_1}$を底辺としたときの高さを$h$とすると
\[ h=\frac{[ナ]a}{[ニ]-a^{[ヌ]}} \]
である.よって,星型$S$の面積は$[ネ]h$である.
(図は省略)
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$-平面上の円$C: x^2+y^2=1$の内側を半径$\displaystyle\frac{1}{2}$の円$D$が$C$に接しながらすべらずに転がる.時刻$t$において$D$は点$(\cos\, t,\ \sin\, t)$で$C$に接しているとする.$D$の周上の点$\mathrm{P}$の軌跡について考える.ある時刻$t_0$において点$\mathrm{P}$が$\displaystyle(\frac{1}{4},\ \frac{\sqrt{3}}{4})$にあり,$D$の中心が第$2$象限にあるとする.以下の問に答えよ.

(1)時刻$t_0$における$D$の中心の座標を求めよ.
(2)第$1$象限において,点$\mathrm{P}$が$C$上にあるときの$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$の軌跡を$xy$-平面上に図示せよ.
早稲田大学 私立 早稲田大学 2011年 第1問
次の$[ ]$にあてはまる数または数式を解答用紙の所定欄に記入せよ.

(1)平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{O}$を中心とする半径$1$の円周上にあり,
\[ 3 \overrightarrow{\mathrm{OA}}+7 \overrightarrow{\mathrm{OB}}+5 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
を満たしている.このとき線分$\mathrm{AB}$の長さは[ア]である.
(2)$xy$平面上の曲線$y=e^x$と$y$軸および直線$y=e$で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積は[イ]である.
(3)碁石を$n$個一列に並べる並べ方のうち,黒石が先頭で白石どうしは隣り合わないような並べ方の総数を$a_n$とする.ここで,$a_1=1$,$a_2=2$である.
(4)立方体の各辺の中点は全部で$12$個ある.頂点がすべてこれら$12$個の点のうちのどれかであるような正多角形は全部で[エ]個ある.
早稲田大学 私立 早稲田大学 2011年 第2問
$xy$平面上にある$3$つの半直線
\[ y=0 (x \geqq 0),\quad y=x\tan \theta (x \geqq 0),\quad y=-\sqrt{3}x (x \leqq 0) \]
と,原点$\mathrm{O}$を中心とする半径$r (r \geqq 1)$の円が交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.ただし$\displaystyle\frac{\pi}{6} \leqq \theta \leqq \frac{\pi}{3}$である.

(1)四角形$\mathrm{OABC}$の面積が半径$1$の円に内接する正六角形の面積の$\displaystyle\frac{1}{3}$に等しいとき,$r^2$を$\theta$を用いて表せ.
(2)$\displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}r^2\,d\theta$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第1問
次の各問に答えよ.

(1)ある工場の製品が$50$個あり,その中に不良品が$2$個だけ含まれている.このとき次の問いに答えよ.

(2)この$50$個の製品の中から$5$個を同時に取り出したとき,少なくとも$1$個の不良品が含まれる確率は$[ア]$である.
(3)この$50$個の製品の中から同時にいくつかの製品を取り出したとき,$1$個以上の不良品が含まれる確率を$\displaystyle\frac{1}{2}$より大きくなるようにしたい.このときに,取り出す製品の個数は少なくとも$[イ]$個でなければならない.

(4)$x^2+y^2=25$で表される円$A$がある.点$(7,\ 1)$から円$A$に接線を引く.

(5)接線の方程式は,$y=-[ウ]x+[エ]$と$y=[オ]x-[カ]$で表される.$[ウ]$,$[エ]$,$[オ]$,$[カ]$を正の分数で表せ.
(6)上で求めた$2$本の接線に接し,さらに円$A$に接する円は$[キ]$個ある.これらの$[キ]$個の円の半径で,最大の半径は$[ク]$であり,最小の半径は$[ケ]$である.
明治大学 私立 明治大学 2011年 第1問
次の空欄$[ア]$から$[カ]$に当てはまるものをそれぞれ入れよ.ただし$\log$は自然対数,また$e$はその底である.

(1)円柱$C$の底面の半径を$r$,高さを$h$とする.$C$の体積が$V$であるとき$C$の表面積$S$を$r$と$V$で表せば
\[ S=2 \pi r^{[ア]}+2Vr^{[イ]} \]
となる.したがって体積$V$を一定にしたまま$S$を最小にするためには
\[ r=\left( \frac{V}{[ウ]} \right)^{\frac{1}{3}} \]
とすればよい.このとき$r$と$h$の間には$r=[エ]h$の関係がある.
(2)次の問いに答えよ.

(i) $\displaystyle \lim_{n \to \infty} \frac{\log (n+5)}{\log (n+2)}=[オ]$
(ii) 数列$\{a_n\},\ \{b_n\}$をそれぞれ
\[ a_n=(n+5)^{-2n+1},\quad b_n=\frac{1}{n \log (n+2)} \]
で定める.このとき
\[ \lim_{n \to \infty} (a_n)^{b_n}=[カ] \]
となる.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。