タグ「半径」の検索結果

53ページ目:全712問中521問~530問を表示)
東京大学 国立 東京大学 2011年 第1問
座標平面において,点P$(0,\ 1)$を中心とする半径1の円を$C$とする.$a$を$0<a<1$を満たす実数とし,直線$y=a(x+1)$と$C$との交点をQ,Rとする.

(1)$\triangle$PQRの面積$S(a)$を求めよ.
(2)$a$が$0<a<1$の範囲を動くとき,$S(a)$が最大となる$a$を求めよ.
千葉大学 国立 千葉大学 2011年 第2問
三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{3+\sqrt{3}}{4}$,外接円の半径は$1$,$\angle \mathrm{BAC} = 60^\circ,\ \mathrm{AB} > \mathrm{AC}$である.このとき,三角形$\mathrm{ABC}$の各辺の長さを求めよ.
秋田大学 国立 秋田大学 2011年 第2問
円$C_1:x^2+y^2=25$と円$C_2:(x-10)^2+(y-5)^2=50$の$2$つの交点と原点を通る円を$C_3$とする.次の問いに答えよ.

(1)円$C_3$の中心と半径を求めよ.
(2)点P$(x,\ y)$が円$C_3$上を動くとき,$2y-x$の最大値を求めよ.
(3)円$C_1$と円$C_2$の$2$つの交点を通る円の中心の軌跡を求めよ.
(4)円$C_1$と円$C_2$の$2$つの交点を通る円を$C$とする.点Q$(x,\ y)$が円$C$上を動くとき,$2y-x$の最大値が最小となる円$C$の中心と半径を求めよ.
秋田大学 国立 秋田大学 2011年 第3問
点$\mathrm{O}$を中心とし,半径が$r$である円に内接する$\triangle \mathrm{ABC}$について,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$に内分する点を$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$r$と内積$\overrightarrow{a}\cdot \overrightarrow{b}$を用いて$|\overrightarrow{\mathrm{OA^\prime}}|^2$を表せ.
(2)$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る円の中心が点$\mathrm{O}$と一致するとき,$\triangle \mathrm{ABC}$が正三角形であることを示せ.
広島大学 国立 広島大学 2011年 第4問
平面上で,線分ABを$1:2$に内分する点をOとし,Oを中心とする半径OBの円を$S$,円$S$と直線ABとの交点のうち点Bと異なる方をCとする.点Pは円$S$の内部にあり,線分BC上にないものとする.円$S$と直線PBとの交点のうち点Bと異なる方をQとする.$\overrightarrow{\mathrm{PA}} =\overrightarrow{a},\ \overrightarrow{\mathrm{PB}} =\overrightarrow{b},\ \angle \text{APB} = \theta$とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PO}},\ \overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{OB}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)点Pが円$S$の内部にあることを用いて,$\displaystyle \cos \theta < \frac{|\overrightarrow{b}|}{4|\overrightarrow{a}|}$を証明せよ.
(3)PQの長さを$|\overrightarrow{a}|,\ |\overrightarrow{b}|,\ \theta$で表せ.
(4)$\text{PA}=3,\ \text{PB}=2$とする.$\triangle \text{QAB} = 3 \triangle \text{POB}$を満たすとき,$\triangle$PABの面積を求めよ.
金沢大学 国立 金沢大学 2011年 第1問
座標平面上に点$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$をとる.また,原点$\mathrm{O}$と$\mathrm{A}$ \\
の中点を$\mathrm{L}$,$\mathrm{A}$と$\mathrm{B}$の中点を$\mathrm{M}$,$\mathrm{B}$と$\mathrm{O}$の中点を$\mathrm{N}$とする. \\
さらに,$\triangle \mathrm{OAB}$の内接円を$C_1$,$\triangle \mathrm{LMN}$の外接円を$C_2$とする. \\
次の問いに答えよ.
\img{355_1273_2011_1}{28}


(1)円$C_1$の半径$r_1$と中心$\mathrm{P}_1$の座標を求めよ.
(2)円$C_2$の半径$r_2$と中心$\mathrm{P}_2$の座標を求めよ.
(3)円$C_1$と円$C_2$が接することを示せ.
東京工業大学 国立 東京工業大学 2011年 第3問
定数$k$は$k > 1$をみたすとする.$xy$平面上の点A$(1,\ 0)$を通り$x$軸に垂直な直線の第1象限に含まれる部分を,2点X,Yが$\text{AY} = k \text{AX}$をみたしながら動いている.原点O$(0,\ 0)$を中心とする半径1の円と線分OX,OYが交わる点をそれぞれP,Qとするとき,$\triangle$OPQの面積の最大値を$k$を用いて表せ.
千葉大学 国立 千葉大学 2011年 第3問
四角錐$\mathrm{OABCD}$において,底面$\mathrm{ABCD}$は$1$辺の長さ$2$の正方形で,
\[ \mathrm{OA} = \mathrm{OB} = \mathrm{OC} = \mathrm{OD} = \sqrt{5} \]
である.

(1)四角錐$\mathrm{OABCD}$の高さを求めよ.
(2)四角錐$\mathrm{OABCD}$に内接する球$S$の半径を求めよ.
(3)内接する球$S$の表面積と体積を求めよ.
信州大学 国立 信州大学 2011年 第5問
次の問いに答えよ.

(1)次の不定積分を求めよ.
\[ \int \log (1+\sqrt{x}) \, dx \]
(2)点$(1,\ 1)$を中心とする半径$1$の円と,$x$軸および$y$軸で囲まれた図形を,$x$軸の周りに$1$回転してできる立体の体積を求めよ.ただし,回転させる図形は円の中心を含まないものとする.
福井大学 国立 福井大学 2011年 第2問
座標平面上の原点Oを中心とする半径1の円周上に,点Pがある.ただし,Pは第1象限の点である.点Pから$x$軸に下ろした垂線と$x$軸との交点をQ,線分PQを$2:1$に内分する点をRとする.$\theta=\angle \text{QOP}$のときの$\tan \angle \text{QOR}$と$\tan \angle \text{ROP}$の値をそれぞれ$f(\theta),\ g(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$と$g(\theta)$を$\theta$を用いて表せ.
(2)$g(\theta)$の$\displaystyle 0<\theta<\frac{\pi}{2}$における最大値と,そのときの$\theta$の値を求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。