タグ「半径」の検索結果

51ページ目:全712問中501問~510問を表示)
九州産業大学 私立 九州産業大学 2012年 第2問
円$\mathrm{O}$に内接する台形$\mathrm{ABCD}$において,$\mathrm{AB}=4$,$\mathrm{CD}=2$,$\mathrm{AB}$と$\mathrm{CD}$が平行である.対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{ABD}={60}^\circ$である.

(1)$\triangle \mathrm{ABE}$の面積は$[ア] \sqrt{[イ]}$である.
(2)辺$\mathrm{AD}$の長さは$\mathrm{AD}=[ウ] \sqrt{[エ]}$である.
(3)台形$\mathrm{ABCD}$の高さは$[オ] \sqrt{[カ]}$である.
(4)台形$\mathrm{ABCD}$の面積は$[キ] \sqrt{[ク]}$である.

(5)円$\mathrm{O}$の半径は$\displaystyle \frac{[ケ] \sqrt{[コサ]}}{[シ]}$である.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{0.5^2-0.4^2}$を計算せよ.
(2)放物線$y=x^2+4x-1$を点$(1,\ 2)$に関して対称移動した放物線の方程式を求めよ.
(3)循環小数$2.0 \dot{3}$を分数で表せ.
(4)半径がそれぞれ$1$である$2$つの円が,一方の円周上に他方の円の中心があるような位置で重なっている.このとき,$2$つの円が重なっている部分の面積を求めよ.なお,円周率は$\pi$とする.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}$を計算せよ.

(2)$x^3-x^2-4x+4$を因数分解せよ.
(3)$0^\circ<\theta<{60}^\circ$のとき,$\cos ({180}^\circ-\theta)$の値の範囲を求めよ.
(4)$\mathrm{BC}=3$,$\angle B={135}^\circ$である$\mathrm{ABC}$において,外接円の半径が$3$のとき,$\angle A$の大きさを求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を記入せよ.

(1)点Oを原点とする座標平面内に,2点A$(5,\ 10)$,B$(-2,\ 4)$がある.$\angle \text{AOB} = \theta$とするとき,$\cos \theta = [ア]$であり,$\sin \theta = [イ]$である.また,$\triangle \text{AOB}$の面積は[ウ]であり,内接円の半径$r$は[エ]である.また,外接円の半径$R$は[オ]であり,外心の座標は[カ]である.さらに,重心の座標は[キ]である.
(2)サイコロを3回投げ,出た目の数字を順に$a,\ b,\ c$とする.このとき,2次方程式$ax^2+bx+c=0$が異なる2つの実数解を持つ確率は[ク]である.また,$\log_{(a+b)}c$が整数となる確率は[ケ]であり,ベクトル$(a,\ b)$とベクトル$(c,\ -1)$が直交する確率は[コ]である.
首都大学東京 公立 首都大学東京 2012年 第2問
原点O$(0,\ 0,\ 0)$と点A$(1,\ 1,\ 1)$を通る直線を$\ell$とし,3点B$(1,\ 0,\ 0)$,C$(0,\ 2,\ 0)$,D$(0,\ 0,\ 3)$を通る平面を$\alpha$とする.以下の問いに答えなさい.

(1)ベクトル$\overrightarrow{a}$は平面$\alpha$に垂直で,成分がすべて正であり,長さが7になるものとする.このとき,$\overrightarrow{a}$を成分で表しなさい.
(2)$\triangle$BCDの面積を求めなさい.
(3)Oから平面$\alpha$へ引いた垂線と平面$\alpha$との交点をHとする.線分OHの長さを求めなさい.
(4)Pは座標がすべて正である直線$\ell$上の点とする.Pを中心とする半径7の球面が点Qで平面$\alpha$に接するとき,P,Qの座標を求めなさい.
高知工科大学 公立 高知工科大学 2012年 第3問
右図のように$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の \\
二等分線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とし,$\theta=\angle \mathrm{BAH}$,$\mathrm{AH}=1$とする. \\
$\triangle \mathrm{ABC}$の内接円$C_1$から始めて,$2$辺$\mathrm{AB}$,$\mathrm{AC}$に接し,かつ,隣り \\
合う$2$円が互いに外接する円の列$C_1,\ C_2,\ C_3,\ \cdots$を三角形の中に \\
作り,その半径を$r_1,\ r_2,\ r_3,\ \cdots$,面積を$S_1,\ S_2,\ S_3,\ \cdots$とする. \\
このとき,次の各問に答えよ.
\img{676_242_2012_1}{45}


(1)$r_1,\ r_2$の値を求めよ.
(2)数列$\{r_n\}$の一般項$r_n$を求めよ.
(3)無限級数
\[ \sum_{n=1}^\infty S_n=S_1+S_2+\cdots +S_n+\cdots \]
の和を求めよ.
京都府立大学 公立 京都府立大学 2012年 第1問
以下の問いに答えよ.

(1)$\displaystyle \frac{6}{3-\sqrt{3}}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+b^2$の値を求めよ.
(2)$(x+2)^{12}$の展開式における最大の係数の値を求めよ.
(3)$3$辺の長さがそれぞれ$4$,$5$,$6$である三角形に内接する円の半径を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第4問
座標平面において,原点$\mathrm{O}$を中心とし半径が$1$の円$C$を考える.円$C$上に,点$\mathrm{P} \displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$,点$\mathrm{Q}(0,\ 1)$,点$\mathrm{R} \displaystyle \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$をとる.以下の問いに答えよ.

(1)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る放物線の方程式を求めよ.
(2)(1)で求めた放物線と,線分$\mathrm{OP}$,線分$\mathrm{OR}$で囲まれた部分の面積を求めよ.
(3)(2)で求めた部分の面積は,点$\mathrm{Q}$が弧の上にある扇形$\mathrm{OPR}$の面積より小さい.このことを用いて,円周率$\pi$に対して$\pi > 3.13$が成り立つことを示せ.ただし,$\sqrt{3}<1.733$であることを用いてよい.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。