タグ「半径」の検索結果

49ページ目:全712問中481問~490問を表示)
北海道薬科大学 私立 北海道薬科大学 2012年 第3問
円$C:x^2+y^2-6x-4y+8=0$と直線$\ell:y=mx-2m-1$($m$は実数)がある.

(1)円$C$の中心$\mathrm{C}$の座標は$([ア],\ [イ])$,半径は$\sqrt{[ウ]}$である.
(2)$\ell$は$m$の値にかかわらず点$\mathrm{A}$を通る.その座標は$([エ],\ [オカ])$である.
(3)$\ell$が$C$と接するのは
\[ m=[キク] \qquad \cdots\cdots① \]

\[ m=\frac{[ケ]}{[コ]} \qquad \cdots\cdots② \]
のときである.
$①$のときの接点を$\mathrm{B}$,$②$のときの接点を$\mathrm{D}$とすると,四角形$\mathrm{ABCD}$から中心角が$\angle \mathrm{BCD}$の扇形を除いた図形の面積は
\[ [サ]-\frac{[シ]}{[ス]} \pi \]
となる.ただし,$0^\circ< \angle \mathrm{BCD}<180^\circ$とする.
東北工業大学 私立 東北工業大学 2012年 第3問
半径$5 \sqrt{2}$の円に内接する三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=45^\circ$,$\angle \mathrm{ACB}=30^\circ$のとき

(1)辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さは
\[ \mathrm{AB}=[][] \sqrt{2},\quad \mathrm{BC}=[][],\quad \mathrm{CA}=[][](1+\sqrt{3}) \]
である.
(2)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[][]}{2}(1+\sqrt{3})$である.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,辺$\mathrm{AM}$の長さの$2$乗は$[][](2+\sqrt{3})$である.
成城大学 私立 成城大学 2012年 第3問
半径$1$の円がある.このとき,以下の問いに答えよ.

(1)この円に外接する正三角形の面積と内接する正三角形の面積との差を求めよ.
(2)この円に外接する正六角形の面積と内接する正六角形の面積との差を求めよ.
(3)この円に外接する正$n$角形の面積と内接する正$n$角形の面積との差を$n$の式で表せ.
昭和大学 私立 昭和大学 2012年 第4問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{6}+\sqrt{2}$,$\mathrm{AC}=2 \sqrt{3}$で面積が$3+\sqrt{3}$のとき,以下の値を求めよ.

(1)$\sin A$
(2)$\cos A$
(3)三角形$\mathrm{ABC}$の外接円の半径
(4)三角形$\mathrm{ABC}$の内接円の半径
法政大学 私立 法政大学 2012年 第3問
四角形$\mathrm{ABCD}$は,$4$つの内角がいずれも${180}^\circ$より小さく,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=\sqrt{6}$,$\mathrm{AD}=1$を満たすとする.

(1)$\angle \mathrm{BAD}={60}^\circ$のとき,$\cos \angle \mathrm{BCD}$の値を求めよ.
(2)${90}^\circ \leqq \angle \mathrm{BAD}$であり,$\triangle \mathrm{ABD}$の外接円の半径が$\displaystyle \frac{3 \sqrt{6}}{4}$のとき,$\triangle \mathrm{BCD}$の外接円の半径を求めよ.
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。