タグ「半径」の検索結果

48ページ目:全712問中471問~480問を表示)
金沢工業大学 私立 金沢工業大学 2012年 第2問
図において,$\triangle \mathrm{ABC}$は半径$1$の円$\mathrm{O}$に内接している.直線$\mathrm{PA}$,$\mathrm{PB}$は円$\mathrm{O}$の接線で,$\angle \mathrm{APB}=60^\circ$,$\angle \mathrm{ABC}=45^\circ$である.このとき,
(図は省略)

(1)$\angle \mathrm{BAP}=[ケコ]^\circ$である.
(2)$\angle \mathrm{BCA}=[サシ]^\circ$,$\angle \mathrm{AOB}=[スセソ]^\circ$である.

(3)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$である.

(4)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[ツ]+\sqrt{[テ]}}{[ト]}$である.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
岡山理科大学 私立 岡山理科大学 2012年 第3問
原点$\mathrm{O}$を中心とする半径$2$の円に,点$\mathrm{P}(4,\ 0)$から引いた$2$つの接線の接点のうち,第$1$象限にある点を$\mathrm{A}$,残りの点を$\mathrm{B}$とする.直線$\mathrm{AB}$が$x$軸と交わる点を$\mathrm{C}$とする.$\mathrm{C}$から直線$\mathrm{AP}$に引いた垂線と$\mathrm{AP}$の交点を$\mathrm{D}$とする.このとき,次の設問に答えよ.

(1)線分$\mathrm{AP}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)$3$点$\mathrm{P}$,$\mathrm{C}$,$\mathrm{D}$を通る円の方程式を求めよ.
中部大学 私立 中部大学 2012年 第4問
$\mathrm{AB}=\mathrm{AC}$である$2$等辺三角形$\mathrm{ABC}$の内接円の半径は$1$である.次の問いに答えよ.
(図は省略)

(1)$\angle \mathrm{ABC}=\theta$とする.$\triangle \mathrm{ABC}$の面積$S$を$\theta$で表せ.
(2)$S$の最小値を求めよ.
青山学院大学 私立 青山学院大学 2012年 第1問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\mathrm{AC}=2$である$\triangle \mathrm{ABC}$について,次の問に答えよ.

(1)次の問に答えよ.

(i) $\theta=\angle \mathrm{ACB}$とするとき,$\displaystyle \cos \theta=-\frac{[ア]}{[イ]}$である.
(ii) $\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{\sqrt{[ウエ]}}{[オ]}$である.

(2)$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{P}$とする.ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$および$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{CP}}=\frac{[カ]}{[キ]} \overrightarrow{a}+\frac{[ク]}{[ケ]} \overrightarrow{b} \]
である.
広島工業大学 私立 広島工業大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$において,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3},\ \angle \mathrm{B}=\frac{\pi}{4},\ \mathrm{AB}=6 \sqrt{2}$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(2)空間のベクトル$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$がある.$\overrightarrow{a}=(1,\ 2,\ -3)$,$\overrightarrow{b}=(0,\ 1,\ -1)$,$|\overrightarrow{c}|=1$,$\overrightarrow{a} \perp \overrightarrow{c}$,$\overrightarrow{b} \perp \overrightarrow{c}$とするとき,$\overrightarrow{c}$を成分で表せ.
(3)数列$\{a_n\}$は初項が$8$,公差が$14$の等差数列とする.数列$\{b_n\}$は公比が正の等比数列とする.$a_1=2b_1$かつ$a_5=b_5$とするとき,$\{b_n\}$の一般項を求めよ.
広島工業大学 私立 広島工業大学 2012年 第7問
$\triangle \mathrm{ABC}$の外接円の点$\mathrm{C}$における接線を$\ell$とする.$\ell$上に$\mathrm{C}$でない点$\mathrm{T}$を,直線$\mathrm{AC}$に関して$\mathrm{B}$と反対の側にとる.$\angle \mathrm{ACT}=60^\circ$,$\mathrm{AB}=2$,$\mathrm{BC}=3$とする.
(図は省略)

(1)辺$\mathrm{AC}$の長さと外接円の半径を求めよ.
(2)円弧$\mathrm{AC}$上に$\mathrm{CD}=1$となる点$\mathrm{D}$をとる.このとき,線分$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
広島国際学院大学 私立 広島国際学院大学 2012年 第4問
下図のように,中心角$60^\circ$の扇形$\mathrm{OAB}$と正三角形$\mathrm{OCD}$,$\mathrm{OAB}$があり,$\triangle \mathrm{OCD}$は扇形$\mathrm{OAB}$に外接し,扇形の半径は$r$とする.
(図は省略)

(1)$\triangle \mathrm{OAB}$の面積$S_1$を求めなさい.
(2)$\triangle \mathrm{OCD}$の面積$S_2$を求めなさい.
(3)扇形$\mathrm{OAB}$の面積$S_3$を求めなさい.ここで,円周率は$\pi$として計算しなさい.
(4)$S_1<S_3<S_2$より$\pi$の範囲を求めなさい.
福岡大学 私立 福岡大学 2012年 第2問
次の$[ ]$をうめよ.

(1)方程式$x^2+2mx+y^2-2(m+1)y+3m^2-4m+6=0$が円を表すとき,$m$の値の範囲は$[ ]$である.また,この円の半径が最大となるとき,その円と直線$y=kx+4$とが共有点をもつための$k$の値の範囲は$[ ]$である.
(2)$10$本のくじの中に当たりくじが$k$本入っている.ただし,$0<k<10$とする.$\mathrm{A}$がくじを$1$本引き,その引いたくじをもとに戻さないで,続いて$\mathrm{B}$がくじを$1$本引く.このとき,$\mathrm{A}$と$\mathrm{B}$がどちらも当たる確率が$\displaystyle \frac{1}{5}$以下となるのは,$k$が$[ ]$以下のときである.また,$\mathrm{A}$と$\mathrm{B}$がどちらもはずれてしまう確率が$\displaystyle \frac{1}{10}$以下となるのは,$k$が$[ ]$以上のときである.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。