タグ「半径」の検索結果

47ページ目:全712問中461問~470問を表示)
東北学院大学 私立 東北学院大学 2012年 第1問
角$\mathrm{C}$を直角とする直角三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$上に$\mathrm{D}$,$\mathrm{H}$を次のようにとる.$\angle \mathrm{CHB}=90^\circ$とし,$\mathrm{D}$を$\mathrm{H}$に関し,$\mathrm{B}$と反対側に$\mathrm{DH}=2$とする.また,$\mathrm{AD}=2 \mathrm{CD}$とし,$\angle \mathrm{CDH}=60^\circ$とする.このとき,次の問いに答えよ.

(1)辺$\mathrm{CD}$の長さを求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\sin A$の値を求めよ.
(4)$\triangle \mathrm{ADC}$の外接円の半径$R$を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
南山大学 私立 南山大学 2012年 第2問
原点$\mathrm{O}$を中心とする半径$1$の円$C$と直線$\ell:y=x$がある.$C$上に点$\mathrm{P}$があり,$x$軸の正の部分を始線として,動径$\mathrm{OP}$の表す正の角を$\theta$とする.ただし,$\displaystyle \frac{1}{4}\pi<\theta<\pi$である.

(1)$\ell$に関して$\mathrm{P}$と対称な点$\mathrm{Q}$をとる.$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)$x$軸に関して$\mathrm{P}$と対称な点$\mathrm{R}$をとる.三角形$\mathrm{PQR}$の面積$S$を$\theta$を用いて表せ.
(3)$S$が最大になるときの$\theta$と$S$の値を求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$\triangle \mathrm{ABC}$において,$\mathrm{AC}=10$,$\mathrm{BC}=6$,$\displaystyle \cos A=\frac{4}{5}$とし,辺$\mathrm{AC}$の中点を$\mathrm{M}$とする.このとき,$\tan A=[ア]$であり,$\triangle \mathrm{BCM}$の外接円の半径は$[イ]$である.
(2)関数$f(x)=|x-1|-|x+2|+|x-3|$が,$f(a)=0$を満たすとき,$a=[ウ]$である.また,$y=f(x)$のグラフと$x$軸で囲まれた図形の面積は$[エ]$である.
(3)$k$を正の実数とする.$3$次関数$f(x)=kx^3+3kx^2-9kx+3$の極大値は$[オ]$である.また,$f(x)=0$が正の実数解を持つような$k$の値の範囲は$[カ]$である.
(4)円$C:x^2+(y-2)^2=1$と点$\mathrm{A}(2,\ 0)$がある.この$C$上の点$\mathrm{P}$と$\mathrm{A}$を結ぶ線分$\mathrm{PA}$の中点を$\mathrm{Q}$とするとき,$\mathrm{Q}$の軌跡の方程式は$[キ]$である.また,$\mathrm{Q}$の軌跡と$C$が交わる点の$x$座標は$[ク]$である.
(5)$a>1$に対して最小値が$2$である関数$f(x)=\log_a (x^2-2x+3)$と,関数$g(x)=\log_2 (2x-1)^2$がある.このとき,$a=[ケ]$であり,$f(x)=g(x)$を満たす$x$の値は$[コ]$である.
西南学院大学 私立 西南学院大学 2012年 第1問
半径$R$の円に,四角形$\mathrm{ABCD}$が内接している.$\mathrm{AB}=\mathrm{BC}=\sqrt{19}$,$\mathrm{AD}=2$,$\mathrm{CD}=3$のとき,$\mathrm{AC}=\sqrt{[アイ]}$,$\displaystyle R=\frac{\sqrt{[ウエ]}}{[オ]}$,$\mathrm{BD}=[カ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
次の$[ ]$にあてはまる最も適当な数を記入しなさい.

円に内接する四角形$\mathrm{ABCD}$において,
\qquad $\mathrm{AB}=7 \sqrt{2},\quad \mathrm{BC}=8,\quad \mathrm{CD}=\sqrt{2},\quad \angle \mathrm{ABC}=45^\circ$

とする.このとき,対角線$\mathrm{AC}$の長さは$\mathrm{AC}=[タ]$なので,四角形$\mathrm{ABCD}$が内接している円の半径$R$は$R=[チ]$である.また,辺$\mathrm{AD}$の長さは$\mathrm{AD}=[ツ]$なので,四角形$\mathrm{ABCD}$の面積$S$は$S=[テ]$である.さらに,対角線$\mathrm{BD}$の長さは$\mathrm{BD}=[ト]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\mathrm{O}$を原点とする座標平面において,点$(1,\ 1)$を点$(5,\ 5)$に,点$(1,\ -7)$を点$(-3,\ 21)$に移す$1$次変換を$f$とする.$f$による点$\mathrm{P}$の像を点$\mathrm{Q}$とするとき,$\mathrm{P}$に対して内積の条件
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{PQ}}=0 (*) \]
を考える.

(1)$f$を表す行列を求めよ.
(2)条件$(*)$を満たす点$\mathrm{P}(x,\ y)$の軌跡は$2$直線となる.この$2$直線の方程式を求めよ.
実数$a \geqq 0$に対して,
「点$(a,\ 0)$を中心とする半径$1$の円周上の点$\mathrm{P}$で,条件$(*)$を満たすものがちょうど$2$つある」 $(**)$
とする.この$2$点を$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$とするとき,$i=1,\ 2$に対して,$\mathrm{P}_i$の$f$による像を$\mathrm{Q}_i$とし,$\triangle \mathrm{OP}_i \mathrm{Q}_i$の面積を$S_i$とする.
(3)上の条件$(**)$を満たす$a$の値の範囲を求めよ.
(4)$S_i$を$y_i$を用いて表せ.また,和$S_1+S_2$の値を$a$を用いて表せ.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
東京理科大学 私立 東京理科大学 2012年 第2問
$s,\ t$を実数とし,$0<s<1$とする.座標空間内の$3$点
\[ \begin{array}{l}
\mathrm{P}((2-s)+s \cos t,\ 0,\ (2-s)+s \sin t), \\ \\
\displaystyle \mathrm{Q} \left( \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ (2-s)+s \sin t \right), \\ \\
\mathrm{R}(0,\ 0,\ (2-s)+s \sin t)
\end{array} \]
について,次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を含む平面の方程式を求めよ.
(2)$\mathrm{RP}=\mathrm{RQ}$を示せ.

点$\mathrm{Q}$は,点$\mathrm{R}$を中心とし$\mathrm{RP}$を半径とする円周上に存在する.このとき,弦$\mathrm{PQ}$に対する弧$\mathrm{PQ}$と,半径$\mathrm{RP}$および半径$\mathrm{RQ}$で囲まれる扇形を$C$とする.ただし,$C$の中心角$\angle \mathrm{PRQ}$は$\pi$以下とする.

(3)$C$の面積を$s$と$t$を用いて表せ.
(4)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{R}$の$z$座標の動く範囲を$s$を用いて表せ.
(5)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_1$を$s$を用いて表せ.
(6)$t$が$\displaystyle \frac{\pi}{2} \leqq t \leqq \frac{3\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_2$を$s$を用いて表せ.
(7)上の$(5)$,$(6)$の$V_1$,$V_2$に対して,$s$が$\displaystyle \frac{1}{4} \leqq s \leqq \frac{1}{2}$の範囲を動くときの$V_1-V_2$の最大値とそのときの$s$の値を求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。