タグ「半径」の検索結果

41ページ目:全712問中401問~410問を表示)
一橋大学 国立 一橋大学 2012年 第4問
$xyz$空間内の平面$z=2$上に点Pがあり,平面$z=1$上に点Qがある.直線PQと$xy$平面の交点をRとする.

(1)P$(0,\ 0,\ 2)$とする.点Qが平面$z=1$上で点$(0,\ 0,\ 1)$を中心とする半径1の円周上を動くとき,点Rの軌跡の方程式を求めよ.
(2)平面$z=1$上に4点A$(1,\ 1,\ 1)$,B$(1,\ -1,\ 1)$,C$(-1,\ -1,\ 1)$,D$(-1,\ 1,\ 1)$をとる.点Pが平面$z=2$上で点$(0,\ 0,\ 2)$を中心とする半径1の円周上を動き,点Qが正方形ABCDの周上を動くとき,点Rが動きうる領域を$xy$平面上に図示し,その面積を求めよ.
大阪大学 国立 大阪大学 2012年 第3問
$xyz$空間に3点O$(0,\ 0,\ 0)$,A$(1,\ 0,\ 1)$,B$(0,\ \sqrt{3},\ 1)$がある.平面$z=0$に含まれ,中心がO,半径が1の円を$W$とする.点Pが線分OA上を,点Qが円$W$の周および内部を動くとき,$\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$をみたす点R全体がつくる立体を$V_A$とおく.同様に点Pが線分OB上を,点Qが円$W$の周および内部を動くとき,$\overrightarrow{\mathrm{OR}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}$をみたす点R全体がつくる立体を$V_B$とおく.さらに$V_A$と$V_B$の重なり合う部分を$V$とする.このとき,以下の問いに答えよ.

(1)平面$\displaystyle z=\cos \theta \ (0 \leqq \theta \leqq \frac{\pi}{2})$による立体$V$の切り口の面積を$\theta$を用いて表せ.
(2)立体$V$の体積を求めよ.
信州大学 国立 信州大学 2012年 第1問
次の設問に答えよ.

(1)すべての自然数$n$に対して$\displaystyle \frac{1}{n^2+6n+8}=\frac{A}{n+2}+\frac{B}{n+4}$を満たすような定数$A,\ B$の値を求めよ.また,無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+6n+8}$の和を求めよ.
(2)面積が$\displaystyle \frac{3\sqrt{3}}{2}$の三角形$\mathrm{ABC}$において,$\mathrm{AB}=3,\ \mathrm{AC}=2$であるとき,辺$\mathrm{BC}$の長さを求めよ.
(3)座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を通る平面を$\alpha$とする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{M}$が平面$\alpha$上にあるとき,$\mathrm{M}$の座標と球面の半径$r$を求めよ.
千葉大学 国立 千葉大学 2012年 第2問
$\mathrm{AB}=5,\ \mathrm{BC}=7,\ \mathrm{CA}=8$および$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=t$を満たす四面体$\mathrm{OABC}$がある.

(1)$\angle \mathrm{BAC}$を求めよ.
(2)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$4$つの頂点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一球面上にあるとき,その球の半径が最小になるような実数$t$の値を求めよ.
信州大学 国立 信州大学 2012年 第2問
次の$3$条件をすべてみたす$xy$平面上の円$C$が存在するような実数$t$を求めよ.

(i) 円$C$の半径は$3$である.
(ii) 円$C$は$x$軸に接する.
(iii) 点$\mathrm{P}(t,\ t^2)$は円$C$上にあり,点$\mathrm{P}$における円$C$の接線の方程式は$y=2tx-t^2$である.
金沢大学 国立 金沢大学 2012年 第1問
半径$1$の円に内接する正$2^n$角形$(n \geqq 2)$の面積を$S_n$,周の長さを$L_n$とする.次の問いに答えよ.

(1)$\displaystyle S_n = 2^{n-1} \sin \frac{\pi}{2^{n-1}},\quad L_n=2^{n+1} \sin \frac{\pi}{2^n}$を示せ.

(2)$\displaystyle \frac{S_n}{S_{n+1}}= \cos \frac{\pi}{2^n},\quad \frac{S_n}{L_n}=\frac{1}{2} \cos \frac{\pi}{2^n}$を示せ.

(3)$\displaystyle \lim_{n \to \infty} S_n,\quad \lim_{n \to \infty} \cos \frac{\pi}{2^2}\cos \frac{\pi}{2^3} \cdots \cos \frac{\pi}{2^n}$を求めよ.

(4)$\displaystyle \lim_{n \to \infty}2^n \frac{S_2}{L_2}\frac{S_3}{L_3} \cdots \frac{S_n}{L_n}$を求めよ.
(図は省略)
防衛医科大学校 国立 防衛医科大学校 2012年 第2問
座標平面上の点B$(0,\ 1)$を中心とする半径1の円を$C_0$,$a > 0$とし,点A$(a,\ 0)$を通り$C_0$に接する2直線のうち$x$軸でない方を$\ell$とする.また,$C_0$,$x$軸,$\ell$によって囲まれる領域(境界も含む)の内部にあって,$C_0$,$x$軸,$\ell$に接する円を$C_1$,$C_1$の半径を$r$とする.さらに,$C_0$,$C_1$,$x$軸によって囲まれる領域(境界を含む)の内部にあって,$C_0$,$C_1$,$x$軸に接する円を$C_2$,$C_2$の半径を$s$とする.このとき,以下の問に答えよ.

(1)次の問いに答えよ.

\mon[(i)] $r$を$a$で表せ.
\mon[(ii)] $a =\sqrt{3}$のとき,$r$はいくらか.

(2)次の問いに答えよ.

\mon[(i)] $s$を$a$で表せ.
\mon[(ii)] $\displaystyle a=\frac{3}{4}$のとき,$s$はいくらか.

(3)極限値$\displaystyle \lim_{a \to 0}\frac{r}{a^2},\ \lim_{a \to 0}\frac{s}{r}$を求めよ.
岩手大学 国立 岩手大学 2012年 第1問
次の問いに答えよ.

(1)2次不等式$x^2+(a-3)x+a>0$がすべての実数$x$について成り立つように,実数$a$の値の範囲を求めよ.
(2)半径1の円に内接する正二十四角形の面積を求めよ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n^2} \left( e^{\frac{1}{n}} +2e^{\frac{2}{n}} +3e^{\frac{3}{n}}+\cdots + ne^{\frac{n}{n}} \right) \]
岩手大学 国立 岩手大学 2012年 第2問
座標空間内に3点A$(2,\ 2,\ 0)$,B$(0,\ 2,\ 2)$,C$(2,\ 0,\ 2)$がある.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.ただし,$0^\circ < \theta < 180^\circ$とする.
(2)$\triangle$ABCの面積を求めよ.
(3)原点Oから平面ABCに垂線をおろし,平面ABCとの交点をHとする.点Hは平面ABC上にあるから$\overrightarrow{\mathrm{OH}}=r\overrightarrow{\mathrm{OA}}+s\overrightarrow{\mathrm{OB}}+t\overrightarrow{\mathrm{OC}} \ (r+s+t=1)$と表すことができる.このとき,$r,\ s,\ t$を求めよ.
(4)四面体OABCの体積を求めよ.
(5)球$P$が四面体OABCのすべての面に接している.このとき,球$P$の半径を求めよ.
岩手大学 国立 岩手大学 2012年 第1問
次の問いに答えよ.

(1)2次不等式$x^2+(a-3)x+a>0$がすべての実数$x$について成り立つように,実数$a$の値の範囲を求めよ.
(2)$\displaystyle \frac{x+y}{5}=\frac{y+2z}{6}=\frac{z+3x}{7} \neq 0$のとき,$\displaystyle \frac{2x^2-2y^2+9z^2}{4x^2+y^2-8z^2}$の値を求めよ.
(3)半径1の円に内接する正二十四角形の面積を求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。