タグ「半径」の検索結果

40ページ目:全712問中391問~400問を表示)
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第3問
以下の問いに答えなさい.

(1)図のように半径$R (>0)$の円に内接する三角形$\mathrm{ABC}$において三辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$とする.このとき$\triangle \mathrm{ABC}$の面積$S$を半径$R$を用いて$\displaystyle S=\frac{G}{R}$のように表したとき,$G$を各辺の長さ$a,\ b,\ c$を用いて表わしなさい.

\begin{zahyou*}[ul=2mm](-12,12)(-12,12)%
\tenretu*{O(0,0);A(5,8.6);B(-8.6,-5);C(9.5,-3)e;D(20,5)s}%
{\thicklines
\En\O{10}%
\Drawline{\A\B\C\A}%
}
\tenretu*{D(5,9.3);E(-11,-6);F(10.5,-4);G(0,-5.6);H(5.8,1);I(-3.1,2.7)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\G{$a$}
\emathPut\H{$b$}
\emathPut\I{$c$}
\end{zahyou*}

(2)図のように一辺の長さが$1$の正方形$\mathrm{ABCD}$の各頂点から$x$だけ離れた各辺上に点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$がある.このとき次の設問に答えなさい.ただし,$0 \leqq x \leqq 1$とする.

\begin{zahyou*}[ul=2mm](-12,12)(-14,15)%
\tenretu*{O(0,0);A(-10,10);B(-10,-10);C(10,-10);D(10,10);P(-10,6);Q(-6,-10);R(10,-6);S(6,10)}%
{\thicklines
\Drawline{\A\B\C\D\A}%
\Drawline{\P\Q\R\S\P}%
}
\HenKo<henkoH=2mm>\A\P{}
\HenKo<henkoH=2mm>\B\Q{}
\HenKo<henkoH=2mm>\C\R{}
\HenKo<henkoH=2mm>\D\S{}
\tenretu*{A(-11,11);B(-12.5,-10);C(10,-12);D(11,10);P(-12,4.5);Q(-6,-12);R(11,-6);S(5,11)}%
\emathPut\A{$\mathrm{A}$}
\emathPut\B{$\mathrm{B}$}
\emathPut\C{$\mathrm{C}$}
\emathPut\D{$\mathrm{D}$}
\emathPut\P{$\mathrm{P}$}
\emathPut\Q{$\mathrm{Q}$}
\emathPut\R{$\mathrm{R}$}
\emathPut\S{$\mathrm{S}$}
\tenretu*{X(-12.8,7.7);Y(-8.8,-12.7);Z(11.5,-8.7);W(7.5,11.5)}%
\emathPut\X{$x$}
\emathPut\Y{$x$}
\emathPut\Z{$x$}
\emathPut\W{$x$}
\end{zahyou*}


(i) 四角形$\mathrm{PQRS}$の面積$W$を求めなさい.
(ii) $W$が最小となるときの$x$の値を求めなさい.また,そのときの$W$の値も求めなさい.
兵庫県立大学 公立 兵庫県立大学 2013年 第4問
地球を半径$1$の完全な球と仮定し,その球面を$S$と表す.また,地球の中心$\mathrm{O}$,そして,$S$上の,北緯$30^\circ$東経$60^\circ$の点$\mathrm{A}$,および,南緯$30^\circ$西経$60^\circ$の点$\mathrm{B}$の$3$点を含む平面を$\alpha$とする.このとき,次の問に答えなさい.

(1)点$\mathrm{P}$,$\mathrm{Q}$を,赤道上にあり,それぞれ,東経$0^\circ$,東経$90^\circ$の点とする.また,北極点を点$\mathrm{R}$とする.そこで,原点が地球の中心$\mathrm{O}$であり,さらに,点$\mathrm{P}$が$(1,\ 0,\ 0)$,点$\mathrm{Q}$が$(0,\ 1,\ 0)$,そして,点$\mathrm{R}$が$(0,\ 0,\ 1)$と表される空間座標を考える.このとき,点$\mathrm{A}$,$\mathrm{B}$の座標をそれぞれ求めなさい.
(2)地球表面$S$上の東経が$135^\circ$の点で,平面$\alpha$上にあるものの緯度$\theta (-90^\circ \leqq \theta \leqq 90^\circ)$に対して,$\tan \theta$を求めなさい.ただし,北極点の緯度は$90^\circ$,南極点の緯度は$-90^\circ$とする.
大阪府立大学 公立 大阪府立大学 2013年 第3問
座標平面上の点$\mathrm{P}(0,\ -1)$を中心とする半径$2$の円を$C$とする.$C$上に点$\mathrm{Q}(0,\ 1)$をとる.点$\mathrm{R}$を$C$上の点で$\angle \mathrm{QPR}=120^\circ$をみたし,$\mathrm{R}$の$x$座標は負であるようにとる.$\mathrm{Q}$と$\mathrm{R}$を両端として,中心角が$120^\circ$である$C$の弧を$A$とする.さらに,$a$を実数の定数として,直線$\displaystyle y=\frac{1}{\sqrt{3}}x+a$を$\ell$とするとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$A$と$\ell$の共有点の個数を求めよ.
(3)$A$と$\ell$が相異なる$2$つの共有点をもつとき,$A$と$\ell$で囲まれた部分の面積を$S(a)$とする.$S(a)$が最大になるときの$a$の値と,そのときの$S(a)$の値を求めよ.
京都府立大学 公立 京都府立大学 2013年 第2問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(-1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(0,\ 0,\ 2)$,$\mathrm{E}(0,\ 0,\ 4)$をとる.中心が$\mathrm{D}$,半径が$2$の球面を$S$とし,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$S$が$\alpha$と交わってできる図形を$F$とする.$\mathrm{D}$から$\alpha$に垂線$\mathrm{DH}$を下ろす.以下の問いに答えよ.

(1)$\alpha$に垂直な単位ベクトルをすべて求めよ.
(2)$F$は$\mathrm{H}$を中心とする円であることを示せ.
(3)$F$の半径と中心の座標を求めよ.
(4)点$\mathrm{P}$は$F$上を動く点とし,直線$\mathrm{EP}$と$xy$平面との交点を$\mathrm{Q}(s,\ t,\ 0)$とする.このとき,$s,\ t$が満たす方程式を求めよ.
釧路公立大学 公立 釧路公立大学 2013年 第1問
以下の各問に答えよ.

(1)ある大学の売店では年会費を$5,000$円払えば会員となり,品物を$5 \, \%$引きで買うことができる.$1$個$380$円の品物を買うとき,何個以上買うと,会員になった方が,会員にならないよりも合計金額が安くなるか答えよ.
(2)$2$次関数$y=3x^2+6nx+12n$がある.

(i) この$2$次関数の最小値$m$を,$n$の関数で表せ.
(ii) $n$の値を変化させて,$(1)$における最小値$m$が最も大きくなるときの$n$の値と,そのときの$m$の値を求めよ.

(3)底面の半径が$6$,高さが$8$の円錐に内接する球$\mathrm{Q}$の表面積と体積を求めよ.ただし,円周率は$\pi$とする.
島根県立大学 公立 島根県立大学 2013年 第1問
次の問いに答えよ.

(1)曲線$y=2x^3-ax^2+3bx$上の点$(-1,\ 4)$における接線が,直線$2013x-671y+2013=0$と平行になるとき,$a$と$b$の値を求めよ.
(2)$\mathrm{SUCCESS}$の$7$文字をすべて使ってできる順列のうち,最初の文字と最後の文字がともに$\mathrm{C}$となる確率を分数で答えよ.
(3)$(5x-y-2z)(25x^2+5xy+y^2-2yz+4z^2+10zx)$の展開式において,$xyz$の係数を求めよ.
(4)円$x^2+2x+y^2-3=0$上を動く点$\mathrm{P}$と,$2$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ -4)$を$3$つの頂点とする三角形$\mathrm{ABP}$の重心$\mathrm{G}$の軌跡は,中心が$(a,\ b)$,半径$r$の円となる.このとき,$a,\ b,\ r$の値を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第3問
座標平面上において,原点を中心とする半径$1$の円に,放物線$\displaystyle C:y=-\frac{p}{2}x^2+q (p>0,\ q>0)$が異なる$2$点で接しているとする.以下の問いに答えよ.

(1)$p,\ q$の満たす関係式および$p,\ q$の取りうる範囲を求めよ.
(2)$x$軸と$C$で囲まれた図形(ただし,$y \geqq 0$)の面積$S$を$p$を用いて表せ.
(3)$(1)$の条件の下で$p$が動くとき,$S$の最小値を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第2問
座標平面上の点$\mathrm{P}(x,\ y)$について,$x=4(1-2 \sin^2 \theta)$,$y=8 \sin \theta \cos \theta$とし,点$\mathrm{P}$を中心とする半径$1$の円$C$を考える.以下の設問に答えよ.各設問とも,解答とともに導出過程も記述せよ.

(1)$\theta=0$の場合,原点$\mathrm{O}$から円$C$に$2$本の接線を引いたとき,この$2$本の接線のなす角を$\alpha$とする.ただし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このときの$\displaystyle \tan \frac{\alpha}{2}$と$\tan \alpha$の値を求めよ.
(2)点$\mathrm{P}$の$x$座標と$y$座標を$\sin 2\theta$または$\cos 2\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta \leqq \pi$のとき,点$\mathrm{P}$の軌跡を求めよ.
(4)点$\mathrm{P}$が$(3)$で求められた軌跡をたどったとき,円$C$が通過してできた図形の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
以下の問いの空欄$[サ]$~$[ト]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$i$を虚数単位とする.$x=1+i$および$y=1-i$のとき,$x^2+5xy+4y^2$の値は実部が$[サ]$,虚部が$[シ]$となる.
(2)$2$点$(-1,\ 0)$,$(3,\ 2)$を通る半径が$\sqrt{10}$の円は,中心の座標が$([ス],\ [セ])$のものと$([ソ],\ [タ])$のものがある.
(3)$\alpha$と$\beta$が鋭角で,$\displaystyle \sin \alpha=\frac{1}{3}$,$\displaystyle \sin \beta=\frac{3}{5}$のとき,$\sin (\alpha+\beta)$の値は$[チ]$である.
(4)方程式$\displaystyle \log_2 x \cdot \log_2 \frac{x}{2}=12$の解は,$x=[ツ]$と$x=[テ]$である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n \cdot 2^{n+1}$で表されるとき,この数列の一般項$a_n$は$[ト]$となる.
京都府立大学 公立 京都府立大学 2013年 第1問
$xy$平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(4,\ 3)$を中心とする半径$1$の円$D$がある.円$C$上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$があり,円$D$上に点$\mathrm{P}$がある.$2$つの直線$\mathrm{AP}$,$\mathrm{BP}$は円$C$の接線とする.直線$\mathrm{AB}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とするとき,以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$(5,\ 3)$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)$(1)$のとき,点$\mathrm{Q}$の座標を求めよ.
(3)点$\mathrm{P}$が円$D$の円周上を動くとき,点$\mathrm{Q}$の軌跡が点$\displaystyle \left( \frac{1}{6},\ \frac{1}{8} \right)$を中心とする半径$\displaystyle \frac{1}{24}$の円となることを示せ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。