タグ「半径」の検索結果

21ページ目:全712問中201問~210問を表示)
九州大学 国立 九州大学 2014年 第3問
鋭角三角形$\triangle \mathrm{ABC}$について,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A$,$B$,$C$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$,外心を$\mathrm{O}$とし,外接円の半径を$R$とする.

(1)$\mathrm{A}$と$\mathrm{O}$から辺$\mathrm{BC}$に下ろした垂線を,それぞれ$\mathrm{AD}$,$\mathrm{OE}$とする.このとき,
\[ \mathrm{AD}=2R \sin B \sin C,\quad \mathrm{OE}=R \cos A \]
を証明せよ.
(2)$\mathrm{G}$と$\mathrm{O}$が一致するならば$\triangle \mathrm{ABC}$は正三角形であることを証明せよ.
(3)$\triangle \mathrm{ABC}$が正三角形でないとし,さらに$\mathrm{OG}$が$\mathrm{BC}$と平行であるとする.このとき,
\[ \mathrm{AD}=3 \mathrm{OE},\quad \tan B \tan C=3 \]
を証明せよ.
神戸大学 国立 神戸大学 2014年 第2問
$m,\ n (m<n)$を自然数とし,
\[ a=n^2-m^2,\quad b=2mn,\quad c=n^2+m^2 \]
とおく.三辺の長さが$a,\ b,\ c$である三角形の内接円の半径を$r$とし,その三角形の面積を$S$とする.このとき,以下の問に答えよ.

(1)$a^2+b^2=c^2$を示せ.
(2)$r$を$m,\ n$を用いて表せ.
(3)$r$が素数のときに,$S$を$r$を用いて表せ.
(4)$r$が素数のときに,$S$が$6$で割り切れることを示せ.
神戸大学 国立 神戸大学 2014年 第2問
$m,\ n (m<n)$を自然数とし,
\[ a=n^2-m^2,\quad b=2mn,\quad c=n^2+m^2 \]
とおく.三辺の長さが$a,\ b,\ c$である三角形の内接円の半径を$r$とし,その三角形の面積を$S$とする.このとき,以下の問に答えよ.

(1)$a^2+b^2=c^2$を示せ.
(2)$r$を$m,\ n$を用いて表せ.
(3)$r$が素数のときに,$S$を$r$を用いて表せ.
(4)$r$が素数のときに,$S$が$6$で割り切れることを示せ.
広島大学 国立 広島大学 2014年 第1問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$の外部にある点$\mathrm{P}(a,\ b)$から$C$にひいた$2$本の接線と$C$との接点を$\mathrm{H}$,$\mathrm{H}^\prime$とする.$\angle \mathrm{OPH}=\theta$とするとき,次の問いに答えよ.

(1)$\mathrm{PH}$の長さ,および$\sin \theta$を$a,\ b$を用いて表せ.
(2)$\mathrm{HH}^\prime=\mathrm{OP}$となるような点$\mathrm{P}$の軌跡を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
名古屋大学 国立 名古屋大学 2014年 第3問
$xy$平面の$y \geqq 0$の部分にあり,$x$軸に接する円の列$C_1,\ C_2,\ C_3,\ \cdots$を次のように定める.
\begin{itemize}
$C_1$と$C_2$は半径$1$の円で,互いに外接する.
正の整数$n$に対し,$C_{n+2}$は$C_n$と$C_{n+1}$に外接し,$C_n$と$C_{n+1}$の弧および$x$軸で囲まれる部分にある.
\end{itemize}
円$C_n$の半径を$r_n$とする.

(1)等式$\displaystyle \frac{1}{\sqrt{r_{n+2}}}=\frac{1}{\sqrt{r_n}}+\frac{1}{\sqrt{r_{n+1}}}$を示せ.

(2)すべての正の整数$n$に対して$\displaystyle \frac{1}{\sqrt{r_n}}=s \alpha^n+t \beta^n$が成り立つように,$n$によらない定数$\alpha,\ \beta,\ s,\ t$の値を一組与えよ.

(3)$n \to \infty$のとき数列$\displaystyle \left\{ \frac{r_n}{k^n} \right\}$が正の値に収束するように実数$k$の値を定め,そのときの極限値を求めよ.
大阪大学 国立 大阪大学 2014年 第4問
半径$1$の$2$つの球$S_1$と$S_2$が$1$点で接している.互いに重なる部分のない等しい半径を持つ$n$個($n \geqq 3$)の球$T_1,\ T_2,\ \cdots,\ T_n$があり,次の条件(ア),(イ)を満たす.

\mon[(ア)] $T_i$は$S_1$,$S_2$にそれぞれ$1$点で接している($i=1,\ 2,\ \cdots,\ n$).
\mon[(イ)] $T_i$は$T_{i+1}$に$1$点で接しており($i=1,\ 2,\ \cdots,\ n-1$),そして$T_n$は$T_1$に$1$点で接している.

このとき,以下の問いに答えよ.

(1)$T_1,\ T_2,\ \cdots,\ T_n$の共通の半径$r_n$を求めよ.
(2)$S_1$と$S_2$の中心を結ぶ直線のまわりに$T_1$を回転してできる回転体の体積を$V_n$とし,$T_1,\ T_2,\ \cdots,\ T_n$の体積の和を$W_n$とするとき,極限
\[ \lim_{n \to \infty} \frac{W_n}{V_n} \]
を求めよ.
筑波大学 国立 筑波大学 2014年 第4問
平面上の直線$\ell$に同じ側で接する$2$つの円$C_1$,$C_2$があり,$C_1$と$C_2$も互いに外接している.$\ell$,$C_1$,$C_2$で囲まれた領域内に,これら$3$つと互いに接する円$C_3$を作る.同様に$\ell$,$C_n$,$C_{n+1} (n=1,\ 2,\ 3,\ \cdots)$で囲まれた領域内にあり,これら$3$つと互いに接する円を$C_{n+2}$とする.円$C_n$の半径を$r_n$とし,$\displaystyle x_n=\frac{1}{\sqrt{r_n}}$とおく.このとき,以下の問いに答えよ.ただし,$r_1=16$,$r_2=9$とする.

(1)$\ell$が$C_1$,$C_2$,$C_3$と接する点を,それぞれ$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$とおく.線分$\mathrm{A}_1 \mathrm{A}_2$,$\mathrm{A}_1 \mathrm{A}_3$,$\mathrm{A}_2 \mathrm{A}_3$の長さおよび$r_3$の値を求めよ.
(2)ある定数$a,\ b$に対して$x_{n+2}=ax_{n+1}+bx_n (n=1,\ 2,\ 3,\ \cdots)$となることを示せ.$a,\ b$の値も求めよ.
(3)$(2)$で求めた$a,\ b$に対して,$2$次方程式$t^2=at+b$の解を$\alpha,\ \beta (\alpha>\beta)$とする.$x_1=c \alpha^2+d \beta^2$を満たす有理数$c,\ d$の値を求めよ.ただし,$\sqrt{5}$が無理数であることは証明なしで用いてよい.
(4)$(3)$の$c,\ d,\ \alpha,\ \beta$に対して,
\[ x_n=c \alpha^{n+1}+d \beta^{n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
となることを示し,数列$\{r_n\}$の一般項を$\alpha,\ \beta$を用いて表せ.
(図は省略)
岩手大学 国立 岩手大学 2014年 第1問
直円柱に対して,底面の半径を$x$,高さを$h$,表面積(側面積と$2$つの底面積の合計)を$S$,体積を$V$で表すことにする.ただし,$x>0$,$h>0$とする.以下の問いに答えよ.

(1)$S$を$x$と$h$を用いて表せ.
(2)$h$を$x$と$S$を用いて表せ.また,$V$を$x$と$S$を用いて表せ.
(3)$S$が一定のもとで,$V$が最大になるときの$x$の値を求めよ.
(4)$S$が一定のもとで,$V$が最大になるときの$x$と$h$の比,すなわち$x:h$を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2014年 第3問
平面上の原点を$\mathrm{O}(0,\ 0)$とし,点$\mathrm{A}(2,\ 0)$をとる.また,$\mathrm{O}$を中心とする半径$1$の円を$C$とする.$C$上の点$\mathrm{P}$に対して$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{APO}=\phi$,$\mathrm{AP}=z$とおく.ただし,$0<\theta<\pi$とする.下の問いに答えなさい.

(1)正弦定理を用いて$z$を$\theta$と$\phi$で表しなさい.
(2)余弦定理を用いて$z^2$を$\theta$で表しなさい.
(3)$\displaystyle \frac{dz}{d\theta}$を$\phi$で表しなさい.
(4)$\displaystyle \frac{dz}{d\theta}$の最大値,およびその最大値を与える$\theta$の値を求めなさい.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。