タグ「半径」の検索結果

11ページ目:全712問中101問~110問を表示)
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
香川大学 国立 香川大学 2015年 第2問
図$1$のように,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=6$の二等辺三角形$\mathrm{ABC}$内に,半径が等しい$2$つの円$\mathrm{O}_1$,$\mathrm{O}_2$が次の$2$つの条件を満たすように置かれているとする.
\begin{itemize}
円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接する.
円$\mathrm{O}_1$は辺$\mathrm{AB}$と辺$\mathrm{BC}$に接し,円$\mathrm{O}_2$は辺$\mathrm{AC}$と辺$\mathrm{BC}$に接する.
\end{itemize}
このとき,次の問に答えよ.
(図は省略)

(1)辺$\mathrm{BC}$の中点を$\mathrm{M}$としたとき,線分$\mathrm{AM}$の長さを求めよ.
(2)円$\mathrm{O}_1$の半径$R$を求めよ.
(3)さらに円$\mathrm{O}_3$が図$2$のように円$\mathrm{O}_1$と円$\mathrm{O}_2$に外接し,辺$\mathrm{AB}$と辺$\mathrm{AC}$に接しているとき,円$\mathrm{O}_3$の半径$r$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第2問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
徳島大学 国立 徳島大学 2015年 第1問
直交座標の原点$\mathrm{O}$を極とし,$x$軸の正の部分を始線とする極座標$(r,\ \theta)$を考える.この極座標で表された$3$点を$\displaystyle \mathrm{A} \left( 1,\ \frac{\pi}{3} \right)$,$\displaystyle \mathrm{B} \left( 2,\ \frac{2 \pi}{3} \right)$,$\displaystyle \mathrm{C} \left( 3,\ \frac{4 \pi}{3} \right)$とする.

(1)点$\mathrm{A}$の直交座標を求めよ.
(2)$\angle \mathrm{OAB}$を求めよ.
(3)$\triangle \mathrm{OBC}$の面積を求めよ.
(4)$\triangle \mathrm{ABC}$の外接円の中心と半径を求めよ.ただし,中心は直交座標で表せ.
佐賀大学 国立 佐賀大学 2015年 第3問
点$\mathrm{O}$を原点とし,$x$軸,$y$軸,$z$軸を座標軸とする座標空間において,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(2,\ 0,\ 0)$,$\mathrm{C}(1,\ 0,\ 1)$がある.点$\mathrm{A}$を中心とする$xy$平面上の半径$1$の円周上に点$\mathrm{P}$をとり,図のように$\theta=\angle \mathrm{BAP}$とおく.ただし,$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$とする.また,直線$\mathrm{CP}$と$yz$平面の交点を$\mathrm{Q}$とおく.このとき,次の問に答えよ.
(図は省略)

(1)点$\mathrm{P}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)$\theta$の値が$\displaystyle \frac{\pi}{2}<\theta<\frac{3}{2}\pi$の範囲で変化するとき,$yz$平面における点$\mathrm{Q}$の軌跡の方程式を求め,その概形を図示せよ.
小樽商科大学 国立 小樽商科大学 2015年 第3問
次の$[ ]$の中を適当に補え.

(1)整数$m \geqq 2015$に対し,
\[ \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+\cdots +\frac{1}{{(2m)}^2-1}=[ア] \]
(2)下図のような道に沿って$\mathrm{A}$地点から$\mathrm{B}$地点まで進むとき,最短経路は何通りあるかを求めると$[イ]$通り.
(図は省略)
(3)中心が$\mathrm{A}(1,\ 0)$にある半径$r (0<r<1)$の円に原点$\mathrm{O}$から$2$本の接線を引く.それぞれの接点と中心$\mathrm{A}$と原点$\mathrm{O}$を頂点とする四角形の面積の最大値$M$とそのときの$r$の値を求めると$(M,\ r)=[ウ]$.
弘前大学 国立 弘前大学 2015年 第3問
側面の展開図が,半径$10$,中心角$x$の扇形である円錐を作る.この円錐の体積の最大値と,そのときの$x$の値を求めよ.ただし,$0^\circ<x<{360}^\circ$とする.
福井大学 国立 福井大学 2015年 第4問
座標平面上に,$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$と,原点を中心とする半径$2$の円周上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$をとるとき,以下の問いに答えよ.

(1)$\mathrm{P}$を通って,直線$\mathrm{AP}$に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$に関して$\mathrm{A}$と対称な点を$\mathrm{C}$とし,$\ell$と直線$\mathrm{BC}$の交点を$\mathrm{Q}$とおく.線分$\mathrm{BQ}$の長さを$\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの点$\mathrm{Q}$の軌跡は楕円であることを示し,その長軸と短軸の長さの比を求めよ.
山梨大学 国立 山梨大学 2015年 第1問
次の問いに答えよ.

(1)$\log_{10}2=0.3010$とする.$2^{2015}$の桁数を求めよ.
(2)座標空間において,点$(a,\ 0,\ -1)$を中心とする半径$3$の球面が,$yz$平面と交わってできる円の半径が$2$のとき,$a$の値を求めよ.
(3)$y=-3x^3+9x-1$の極小値を求めよ.
(4)$\displaystyle y=2 \sin \left( \theta+\frac{\pi}{3} \right)$のグラフをかけ.ただし,$0 \leqq \theta \leqq 2\pi$とする.
山梨大学 国立 山梨大学 2015年 第3問
座標平面上の放物線$\displaystyle y=\frac{x^2}{2}+\frac{5}{2}$を$C$とし,$a$を$2$より小さい実数とする.点$\mathrm{A}(a,\ a)$から$C$に引いた異なる$2$つの接線の接点を各々$\displaystyle \mathrm{P} \left( p,\ \frac{p^2}{2}+\frac{5}{2} \right)$,$\displaystyle \mathrm{Q} \left( q,\ \frac{q^2}{2}+\frac{5}{2} \right)$とする.ただし,$p<q$とする.

(1)$p$および$q$を$a$を用いて表せ.
(2)$\displaystyle \theta=\angle \mathrm{PAQ} \ \left( 0<\theta<\frac{\pi}{2} \right)$とするとき,$\tan \theta$を$a$を用いて表せ.
(3)$a=1$のとき,$\triangle \mathrm{PAQ}$の外接円の半径$R$を求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。