タグ「区間」の検索結果

11ページ目:全135問中101問~110問を表示)
和歌山県立医科大学 公立 和歌山県立医科大学 2012年 第2問
区間$[-1,\ 1]$で,曲線$y=|x|e^{|x|}$と直線$\ell:y=a (0 \leqq a \leqq e)$の間にある部分の面積を$S$とする.

(1)曲線$y=xe^x (x \geqq 0)$と$\ell$の交点の$x$座標を$t$とし,$S$を$t$の式で表せ.
(2)$S$の最大値と最小値,およびそれらをとる$a$の値を求めよ.
横浜市立大学 公立 横浜市立大学 2012年 第3問
$f(x)$を区間$[0,\ \infty )$上の連続関数とする.この区間上の$f(x)$の積分を
\[ \int_0^\infty f(x) \, dx=\lim_{R \to \infty} \int_0^R f(x) \, dx \]
とおく.以下の問いに答えよ.

(1)$\alpha,\ \beta$を正の定数として,積分$\displaystyle \int_0^\infty \frac{1}{(1+\alpha x)(1+\beta x)} \, dx$を求めよ.
(2)$a,\ b,\ c$を相異なる正の定数として,積分$\displaystyle \int_0^\infty \frac{1}{(1+ax)(1+bx)(1+cx)} \, dx$を(結果の表示を簡潔にするため)
\[ \int_0^\infty \frac{1}{(1+ax)(1+bx)(1+cx)} \, dx=A \log a+B \log b+C \log c \]
とおく.$A,\ B,\ C$を求めよ.
釧路公立大学 公立 釧路公立大学 2012年 第1問
以下の各問に答えよ.

(1)次の式を因数分解せよ.$2(a+b+c)^2-2a^2-2b^2+2c^2$
(2)以下の問に答えよ.

(i) 関数$f(x)=|x^2-6x+5|$のグラフをかけ.
(ii) 区間$0 \leqq x \leqq t$における$f(x)=|x^2-6x+5|$の最大値と最小値,およびそのときの$x$の値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第3問
関数$f(x)=mx \cos (mx)-\sin (mx)$について,以下の問いに答えよ.ただし,$m$は正の整数とする.

(1)$f(x)$が極値をとる最も小さい正の実数$x$を,$m$を用いて表せ.
(2)$m=2$のとき,区間$0 \leqq x \leqq 2\pi$における$f(x)$の最大値を求めよ.
(3)$m=3$のとき,曲線$y=f(x)$上の点$\displaystyle \left( \frac{\pi}{2},\ f \left( \frac{\pi}{2} \right) \right)$における曲線の接線が$y$軸と交わる点の座標$(x_0,\ y_0)$を求めよ.
(4)$\displaystyle \int_0^\pi f(x) \, dx=0$が成り立つために$m$が満たすべき条件を求めよ.
大阪大学 国立 大阪大学 2011年 第2問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2+q$とおく.

(1)放物線$y=f(x)$が点$(0,\ 1)$を通り,しかも直線$y=x$の$x>0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1),\ (p_2,\ q_2)$に対して,$f_1(x)=(x-p_1)^2+q_1$および$f_2(x)=(x-p_2)^2+q_2$とおく.実数$\alpha,\ \beta \quad (\text{ただし}\alpha < \beta)$に対して
\[ f_1(\alpha)<f_2(\alpha) \quad \text{かつ} f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R: 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y=f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y=f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
山口大学 国立 山口大学 2011年 第3問
$p,\ q$を整数とする.2次方程式$x^2+px+q=0$が異なる2つの実数解$\alpha,\ \beta \ (\alpha < \beta)$を持ち,区間$[\,\alpha,\ \beta\,]$には,ちょうど2つの整数が含まれているとする.$\alpha$が整数でないとき,$\beta-\alpha$の値を求めなさい.
大阪大学 国立 大阪大学 2011年 第3問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2 +q$とおく.

(1)放物線$y = f(x)$が点$(0,\ 1)$を通り,しかも直線$y = x$の$x > 0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1)$,$(p_2,\ q_2)$に対して,$f_1(x) = (x-p_1)^2 + q_1$および$f_2(x) =(x-p_2)^2 +q_2$とおく.実数$\alpha,\ \beta \ $(ただし$\alpha < \beta$)に対して
\[ f_1(\alpha) < f_2(\alpha) \quad \text{かつ} \quad f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R : 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y = f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y = f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
山口大学 国立 山口大学 2011年 第4問
図のように東西に6本,南北に10本の道がある.東西の道と南北の道の出会う地点を交差点とよび,隣どうしの交差点を結ぶ道を区間ということにする.$\mathrm{A}$地点から$\mathrm{B}$地点に進むとき,次の問いに答えなさい.ただし,どの交差点においても,東西および北のいずれかに進むことはできるが,南に進むことはできないとする.また,後戻りもできないとする.図の中の太線は道順の例を示したものである.

(1)$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(2)$\mathrm{C}$地点を通って,$\mathrm{A}$地点から$\mathrm{B}$地点へ行く道順の総数を求めなさい.
(3)$\mathrm{A}$地点から$\mathrm{B}$地点まで16区間で行く道順の総数を求めなさい.
(図は省略)
三重大学 国立 三重大学 2011年 第4問
関数$\displaystyle f(x)=-\frac{1}{2x}+\tan x,\ g(x)=x\cos (x^2)$について以下の問いに答えよ.

(1)$\displaystyle 0< \alpha < \frac{\pi}{2}$の範囲にある$\alpha$で$f(\alpha)=0$となるものがただひとつ存在することを示せ.
(2)閉区間$\displaystyle \left[\; 0,\ \sqrt{\frac{\pi}{2}} \; \right]$における$g(x)$の増減表を書け.必要ならば(1)の$\alpha$を用いてよい.
(3)$\displaystyle 0< \beta < \sqrt{\frac{\pi}{2}}$の範囲にあり$g^{\prime}(\beta)=0$を満たす$\beta$を(1)の$\alpha$を用いて表せ.また$g(x)=x \cos (x^2) \ (0 \leqq x \leqq \beta)$の逆関数を$h(x)$とする.このとき$y=g(x)$のグラフと$y=h(x)$のグラフの関係に注意して,定積分$\displaystyle \int_0^{g(\beta)} h(x) \, dx$を$\alpha$を用いて表せ.
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
スポンサーリンク

「区間」とは・・・

 まだこのタグの説明は執筆されていません。