タグ「勝者」の検索結果

2ページ目:全22問中11問~20問を表示)
千葉大学 国立 千葉大学 2014年 第4問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
滋賀大学 国立 滋賀大学 2014年 第3問
次のようなゲームを行い,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人の中から$1$人の勝者を決める.赤玉$3$個,白玉$5$個,黒玉$7$個が入った袋から$4$個の玉を同時に取り出し,最も多く取り出された玉が赤玉ならば$\mathrm{A}$,白玉ならば$\mathrm{B}$,黒玉ならば$\mathrm{C}$の勝ちとする.ただし,赤玉と白玉が$2$個ずつ,あるいは赤玉と黒玉が$2$個ずつ取り出されたときは$\mathrm{A}$の勝ち,白玉と黒玉が$2$個ずつ取り出されたときは$\mathrm{B}$の勝ちとする.このとき,次の問いに答えよ.

(1)取り出された$4$個の玉が,赤玉$1$個,白玉$1$個,黒玉$2$個である確率を求めよ.
(2)このゲームを$1$回行ったとき,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が勝つ確率$p_A$,$p_B$,$p_C$をそれぞれ求めよ.
(3)このゲームを$6$回繰り返し行ったとき,$\mathrm{A}$が$1$回,$\mathrm{B}$が$2$回,$\mathrm{C}$が$3$回勝つ確率を$p_A$,$p_B$,$p_C$を用いて表せ.
千葉大学 国立 千葉大学 2014年 第2問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
千葉大学 国立 千葉大学 2014年 第4問
$A$,$B$ふたりは,それぞれ$1$から$4$までの番号のついた$4$枚のカードを持ち,それを用いて何回かの勝負から成るつぎのゲームをする.
\begin{itemize}
初めに$A,\ B$はそれぞれ$4$枚のカードを自分の袋に入れ,よくかきまぜる.
$A,\ B$はそれぞれ自分の袋から無作為に$1$枚ずつカードを取り出し,そのカードを比較して$1$回の勝負を行う.すなわち,大きい番号のついたカードを取り出したほうがこの回は勝ちとし,番号が等しいときはこの回は引き分けとする.
袋から取り出したカードは袋に戻さないものとする.
$A,\ B$どちらかが$2$回勝てば,カードの取り出しをやめて,$2$回勝ったほうをゲームの勝者とする.$4$枚すべてのカードを取り出してもいずれも$2$回勝たなければゲームは引き分けとする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$A$が$0$勝$0$敗$4$引き分けしてゲームが引き分けになる確率を求めよ.
(2)$A$が$1$勝$1$敗$2$引き分けしてゲームが引き分けになる確率を求めよ.
(3)$A$がゲームの勝者になる確率を求めよ.
滋賀大学 国立 滋賀大学 2013年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$人がそれぞれ$9$個のボールを持っていて,次のようなゲームを行う.まずどちらかが硬貨を投げ,表であれば$\mathrm{A}$の勝ち,裏であれば$\mathrm{B}$の勝ちとする.勝者は$0$から$3$までの数が$1$つずつ書かれた$4$枚のカードから無作為に$1$枚を取り出し,書かれている数だけ敗者からボールを受け取る.ただし,取り出したカードはもとに戻すものとする.このとき,次の問いに答えよ.

(1)このゲームを$2$回続けて行ったとき,$2$人の持っているボールの個数が同じである確率を求めよ.
(2)このゲームを$2$回続けて行ったとき,$\mathrm{A}$が$\mathrm{B}$よりも$2$個多くボールを持っている確率を求めよ.
(3)このゲームを$3$回続けて行ったとき,$2$人の持っているボールの個数が同じである確率を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第3問
$n$人でじゃんけんを$1$回する.ただし,どの人もグー,チョキ,パーを出す確率は等しくそれぞれ$\displaystyle \frac{1}{3}$とする.また,「あいこ」とはじゃんけんで勝者が$1$人もいない状態のこととする.このとき次の問に答えよ.

(1)$n=3$のとき,「あいこ」となる確率を求めよ.
(2)$n=4$のとき,勝者が$1$人である確率および勝者が$2$人である確率をそれぞれ求めよ.
(3)$n=3,\ 4,\ 5,\ \cdots$のとき「あいこ」となる確率を$n$を用いて表せ.
早稲田大学 私立 早稲田大学 2012年 第2問
ある競技の大会に,チーム$1$,チーム$2$,チーム$3$,チーム$4$が参加している.大会は予選と決勝戦からなる.まず,抽選によって,図のように$2$チームずつに分かれて予選を行う.次に,各予選の勝者が決勝戦を行う.過去の対戦成績から次のことが分かっている.

チーム$i$とチーム$j$($1\leq i< j \leq 4$)が試合をするとき,確率$p$でチーム$j$が勝利し,確率$1-p$でチーム$i$が勝利する.ただし$0<p<1$である.

このとき,次の各問に答えよ.ただし,(1),(2),(3)は答のみ解答欄に記入せよ.

(1)チーム$1$が優勝する確率を求めよ.
(2)予選においてチーム$1$とチーム$2$が対戦する確率を求めよ.
(3)予選においてチーム$1$とチーム$2$が対戦するとき,チーム$2$が優勝する確率を求めよ.
(4)この大会においてチーム$2$が優勝する確率$f(p)$を求めよ.
(5)$f(p)$を最大にする$p$の値を求めよ.
(図は省略)
昭和大学 私立 昭和大学 2012年 第1問
次の各問に答えよ.

(1)$0 \leqq x<2\pi$のとき,次の不等式を解け.
\[ 4 \sin^2 x+(2-2 \sqrt{2}) \cos x+\sqrt{2}-4 \geqq 0 \]
(2)$\{a_n\} (n \geqq 1)$は初項$3$,公差$4$の等差数列,$\{b_m\} (m \geqq 1)$は初項$1000$,公差$-5$の等差数列とする.

(i) $2$つの等差数列の共通項の個数を求めよ.
(ii) $2$つの等差数列の共通項の総和を求めよ.

(3)$3$人がじゃんけんをして,$1$人だけ勝者を決める.$3$人はそれぞれグー,チョキ,パーを同じ確率で出すとする.勝者がいない場合は再びじゃんけんをする.勝者が$2$人の場合はその$2$人でじゃんけんをする.$2$人でじゃんけんをしたとき,勝者がいない場合は再びその$2$人でじゃんけんをする.

(i) $1$回目のじゃんけんで勝者がいない確率を求めよ.
(ii) $2$回じゃんけんをしても,勝者が$1$人に決まらない確率を求めよ.
(iii) $n$は正の整数とする.$n$回じゃんけんを続けても勝者が$1$人に決まらない確率を求めよ.
上智大学 私立 上智大学 2011年 第3問
以下の問で,各人はじゃんけんでグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.

(1)$3$人でじゃんけんを$1$回するとき,$1$人が勝ち$2$人が負ける確率は$\displaystyle \frac{[ネ]}{[ノ]}$,あいこになる確率は$\displaystyle \frac{[ハ]}{[ヒ]}$である.
(2)$3$人でじゃんけんをする.負けた人がいれば,じゃんけんから抜け,$1$人の勝者が決まるか,じゃんけんの回数が$3$回になるまで繰り返す.じゃんけんの回数が$2$回以内で$1$人の勝者が決まる確率は$\displaystyle \frac{[フ]}{[ヘ]}$,ちょうど$3$回で$1$人の勝者が決まる確率は$\displaystyle \frac{[ホ]}{[マ]}$である.
(3)$4$人でじゃんけんを$1$回するとき,$1$人が勝ち$3$人が負ける確率は$\displaystyle \frac{[ミ]}{[ム]}$,$2$人が勝ち$2$人が負ける確率は$\displaystyle \frac{[メ]}{[モ]}$,あいこになる確率は$\displaystyle \frac{[ヤ]}{[ユ]}$である.
立教大学 私立 立教大学 2011年 第2問
$\mathrm{A}$と$\mathrm{B}$の$2$名が次のようなルールのゲームを行った.

$\mathrm{A}$と$\mathrm{B}$で同時にサイコロを振り,偶数が出た場合は得点を$1$とし,奇数が出た場合は得点を$0$とする.
それぞれが$5$回サイコロを振り終わった時点で,より多くの得点をあげたものを勝者とし,得点が同じ場合は引き分けとする.
このとき,次の問に答えよ.

(1)$\mathrm{A}$の得点が$0$点かつ$\mathrm{B}$の得点が$1$点という経過の後で,終了時に$\mathrm{A}$の得点が$4$点である場合,得点の取り方は何通りあるか.
(2)$\mathrm{A}$と$\mathrm{B}$が引き分ける確率を求めよ.
(3)$\mathrm{A}$が勝利する確率を求めよ.
スポンサーリンク

「勝者」とは・・・

 まだこのタグの説明は執筆されていません。